
Neural Scene Graph Rendering: supplementary material

JONATHAN GRANSKOG, NVIDIA
TILL SCHNABEL, NVIDIA
FABRICE ROUSSELLE, NVIDIA
JAN NOVÁK, NVIDIA
This document provides additional information about the transformations,
the datasets, and the renderer architecture used in the paper. It also analyzes
the impact of geometry and material representation sizes, and discusses one
alternative rendering architecture.

CCS Concepts: • Computing methodologies� Rendering; Neural net-
works.

Additional KeyWords and Phrases: rendering, neural networks, neural scene
representations, modularity, generalization

ACM Reference Format:
Jonathan Granskog, Till Schnabel, Fabrice Rousselle, and Jan Novák. 2021.
Neural Scene Graph Rendering: supplementary material. ACM Trans. Graph.
40, 4, Article 164 (August 2021), 5 pages. https://doi.org/10.1145/3450626.
3459848

1 TRANSFORMATIONS
A number of geometry and material transformations are supported
in our pipeline. In practice, we limit the magnitude of these transfor-
mations, as well as the number of combinations in a single training
job. Networks struggle to learn transformations simultaneously if
they allow for ambiguous interpretations, e.g. texture translation
and geometric translation, even though each transformation could
be learned robustly in isolation.

1.1 Geometry transformations
We support the following geometry transformations: translation,
rotation, scaling, shearing, twirl, and bend. The number and ordering
of transformations is not constrained.
Affine transformations (translation, rotation, scaling and shear-

ing) are encoded from 4 × 4 matrices Q𝑖
g,𝑘 , i.e. 16 parameters, into

𝑑g × 𝑑g matrices T𝑖g,𝑘 using a single encoding network.
Twirl and bend transformations are encoded into the correspond-

ing 𝑑g × 𝑑g matrix T𝑖g,𝑘 from its input parameters with a unique
encoder network each. Both transformations have a single parame-
ter to set the magnitude; see Listing 1. We also experimented with
displacement mapping and 3D twisting. The model did handle them
similarly to the other deformations, but as they were not included
in any of the results, we do not detail them.

Authors’ addresses: Jonathan Granskog, NVIDIA, jgranskog@nvidia.com; Till Schnabel,
NVIDIA, tschnabel@nvidia.com; Fabrice Rousselle, NVIDIA, frousselle@nvidia.com;
Jan Novák, NVIDIA, jnovak@nvidia.com.

© 2021 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3450626.3459848.

Listing 1. Bend and Twirl transformations in GLSL

vec3 r o t a t eZ ( in vec3 p , f l oa t t ) {
f l oa t co = cos ( t ) ;
f l oa t s i = s i n ( t ) ;
p . xy = mat2 ( co , − s i , s i , co ) ∗ p . xy ;
return p ;

}
vec3 bend ( in vec3 p , f l oa t k ) {

return r o t a t eZ ( p , k ∗ p . x ) ;
}
vec3 t w i r l ( i n vec3 p , f l o a t k ) {

return r o t a t eZ ( p , l e ng t h ( p ) ∗ k ) ;
}

1.2 Texture transformations
We experimented with translation, rotation, scaling, shearing, color-
ing, grayscale, and hue shift transformations. Translation, rotation,
scaling, and shearing are encoded and applied exactly like the affine
geometry transformations except that the encoder network uses
different weights and the output matrix T𝑖m,𝑙

is of size 𝑑m × 𝑑m.
Every remaining texture transformation is processed using a dis-

tinct encoder network. Coloring multiplies the current diffuse or
volumetric color by the three-dimensional RGB input color. We uti-
lize this transformation whenever the color appearance of a material
is adjusted. The grayscale transformation blends between grayscale
and colored versions of the texture, and the hue shift transformation
operates in the HSV color space; both are controlled by a single
parameter.

2 OPTIMAL SIZE OF LEARNED REPRESENTATIONS
In the article, we used 32-dimensional geometry andmaterial vectors.
Here we study the impact of the size of the vectors on the visual
quality.

Geometry representation. For the first experiment, we generated
128 × 128 images with up to four objects. Each object is one of
three geometries: bunny, teapot, and monkey head. The objects are
randomly translated, rotated, and scaled (the order is random), and
always assigned the diffuse material with a randomized RGB color
transform. We run seven different experiments, varying the size 𝑑g
of the geometry vector between 1 and 64 (in powers of 2). The size
of the geometry transformation matrices is adjusted accordingly.
The size of the material vector is set to 𝑑m = 32 in all experiments.
Figure 1 shows the visual accuracy for the different experiments.
We observe that, as the representation size diminishes, all shapes
regress to similar blobs.

Material representation. We similarly tested the impact of the
material representation size. For these experiments, we generated
256 × 256 images with up to four objects. Each object is a square
with a randomly assigned texture; we use 16 textures in total. The

ACM Trans. Graph., Vol. 40, No. 4, Article 164. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459848
https://doi.org/10.1145/3450626.3459848
https://doi.org/10.1145/3450626.3459848


164:2 • Granskog et al.

𝑑g = 1 𝑑g = 2 𝑑g = 4 𝑑g = 8 𝑑g = 16 𝑑g = 32 𝑑g = 64 Reference

Fig. 1. Impact of the size 𝑑g of the geometry representation on the quality of rendered results. The results with 𝑑g = 32 feature highest quality; we used this
configuration to generate all results in the main article and in the other figures in this supplementary document.

𝑑m = 1 𝑑m = 2 𝑑m = 4 𝑑m = 8 𝑑m = 16 𝑑m = 32 𝑑m = 64 Reference

Fig. 2. Impact of the size 𝑑m of the material representation on the quality of rendered results. The results with 𝑑m = 32 feature highest quality; we used this
configuration to generate all results in the main article and in the other figures in this supplementary document.

square is randomly translated and scaled. The textures are altered
by the following randomized material transformations: x-axis flip,
rotation, and hue shift. Figure 2 shows the impact of the size 𝑑m of
the material representation; the size of the geometry representation
was held fixed 𝑑g = 32. The most notable impact of reducing the
material representation size is the gradual loss of color and rotational
information.

Summary. In Table 1, we provide a quantitative summary for
the experiments in Figure 1 and Figure 2. The reported metrics are
averaged over 1000 rendered images of random scenes.

3 QUANTITATIVE EVALUATION
Table 2 provides error metrics for two of the models used to generate
results in the paper: the one from Figure 3 (shape deformation), and
the one from Figure 10 (volleyball animation).

For the first model, we used a signed distance field (SDF) renderer
and training images had up to four random shapes (square, triangle,
star or pentagon) at resolution 256 × 256 with 4 samples per pixel.
The shapes were transformed using twirl, bend, scaling, rotation,
translation (always in this order). We use a single canonical material
of constant color, which is modified using a random color transfor-
mation; see Figure 3. Our loss combines the negative log likelihood

ACM Trans. Graph., Vol. 40, No. 4, Article 164. Publication date: August 2021.



Neural Scene Graph Rendering: supplementary material • 164:3

Table 1. Comparison between different vector/matrix sizes for geometry
and materials after 1M iterations of training averaged over 1000 random
scenes.

PSNR ↑ SSIM ↑ LPIPS ↓ FLIP ↓

M
at
er
ia
ls
iz
e𝑑

m

1 20.55 0.867 0.185 0.141
2 21.59 0.882 0.154 0.127
4 26.15 0.933 0.080 0.083
8 29.56 0.968 0.038 0.060
16 29.43 0.966 0.041 0.062
32 29.89 0.968 0.037 0.060
64 28.86 0.960 0.048 0.057

G
eo
m
et
ry

si
ze

𝑑
g 1 18.25 0.820 0.523 0.285

2 18.40 0.820 0.521 0.274
4 19.65 0.823 0.471 0.211
8 21.49 0.835 0.375 0.160
16 28.92 0.942 0.076 0.054
32 28.77 0.939 0.073 0.053
64 28.43 0.934 0.082 0.056

Table 2. Quantitative evaluation of models used in Figure 3 and Figure 10
in the main article. Metrics are averaged over 1000 random scenes.

PSNR ↑ SSIM ↑ LPIPS ↓ FLIP ↓

Figure 3 35.91 0.984 0.007 0.050
Figure 10 36.41 0.982 0.007 0.049

(NLL) with the VGG loss: NLL + 0.5× VGG. The learning rate was
lowered from 10−4 to

√
10×10−5 after 400k iterations. We used 940k

iterations in total.
For the second model, training images had up to three random

objects (sphere or torus) at 256 × 256 resolution with 4 samples per
pixel. The shapes were transformed by scaling, rotation, and trans-
lation. The material is either diffuse or volumetric with a random
color transformation. The scene is lit by a point light, the ground
and the sky are static images. As loss we used: NLL + 0.3× VGG.
The learning rate was lowered from 10−4 to

√
10 × 10−5 after 800k

iterations. We used 1.58M iterations in total.

4 RENDERER ARCHITECTURE
The foundations of our scene representations are the geometry and
material representations. Except for Figure 1 and Figure 2 in this doc-
ument, we used 32-dimensional vectors to represent each shape and
material. Thus, every geometry and texture transformation matrix
is 32 × 32. The transformed geometry and material representations
are concatenated into a 64-dimensional vector which describes the
geometry and appearance of a single object in the scene.
These 64-dimensional vectors are passed to the preprocessor

network, which is a convolutional upsampling network. We use 4×4
deconvolutions with stride 2 and padding 1, and ReLU activation
functions after each deconvolution. Table 3 lists the number of filters
at each level of the preprocessor.

The filters used by the LSTM cells, which use 5 × 5 convolutions
with stride 1 and padding 2, always match the number of filters used
by the last layer of the preprocessor.

Pr
ed
ic
tio

n
Re

fe
re
nc
e

Pr
ed
ic
tio

n
Re

fe
re
nc
e

Fig. 3. Random scenes from training datasets of models used in Figure 3
and Figure 10 of the main article.

The last network—the pixel generator—converts the LSTM state
into an image by processing the state using three 1×1 convolutional
layers. Here, we also use ReLU activation functions, and the number
of filters matches the LSTM cells except in the last layer where it
flattens the feature map into an RGB image.

4.1 Progressive growing
The aforementioned architecture works well at low resolutions (up
to 256× 256 pixels), but at higher resolutions, the training iterations
become prohibitively expensive and the memory footprint excessive.
We thus also tested the idea of progressively growing the model
during training, originally proposed for GAN architectures [Karras
et al. 2018]. While the progressive growing approach worked better
in some of our tests, it occasionally performed worse than training
directly at the target resolution. We thus opted for simplicity and
did not utilize it in any of the results. We still discuss it here as it
should facilitate higher resolutions in the future.
We start at ℎ × 𝑤 = 4 × 4 resolution with 𝑐 = 256 filters per

layer, and progressively double ℎ and𝑤 while reducing 𝑐 to roughly
maintain a constant evaluation time. The filter numbers and the sizes
of training batches for each resolution are summarized in Table 3.We
increase the resolution after every 800 000 entries. At each growing
step, we add another deconvolutional layer and ReLU-activation
to the preprocessor, initialize a new convolutional LSTM cell, and
create a new output pixel generator. These new components provide
a new path for generating the image. Following the recommendation
of Karras et al. [2018] to prevent sudden shocks to the model, we
blend the result from the new and old path over the next 800 000
entries. The old path is then dropped and the growing step repeated
to advance to the next resolution level.

ACM Trans. Graph., Vol. 40, No. 4, Article 164. Publication date: August 2021.



164:4 • Granskog et al.

Table 3. The number of filters used for different resolutions. The right-most
column reports the batch size used when progressively growing the model
(Section 4.1).

Resolution ℎ × 𝑤 Number of filters 𝑐 Batch size

2 × 2 256 32
4 × 4 256 32
8 × 8 256 32
16 × 16 256 32
32 × 32 256 32
64 × 64 128 32
128 × 128 64 32
256 × 256 32 16
512 × 512 32 4

Table 4. Comparison between the streaming renderer and the per-pixel
reading model on 1000 random scenes.

PSNR ↑ SSIM ↑ LPIPS ↓ FLIP ↓

Streaming model 30.52 0.967 0.010 0.058
Reading model 30.65 0.968 0.011 0.059

5 PER-PIXEL READ ARCHITECTURE
Our method uses a recurrent convolutional architecture to render
objects from the neural scene representation. Many recent articles
present image generation networks that process pixels indepen-
dently [Anokhin et al. 2020; Granskog et al. 2020; Mildenhall et al.
2020; Sitzmann et al. 2019].
We experimented with a per-pixel architecture that reads from

the scene representation independently for every pixel. First, for
each pixel, we process the scene objects separately using a gated
recurrent unit (GRU): we concatenate the pixel position encoded
using 2D Fourier features [Mildenhall et al. 2020] to the current state
vector and the object representation. Once all objects are processed,
we aggregate the outputs of the GRU using max pooling and pass it
to another GRU to produce a new state; see Figure 4. The renderer
performs this operation eight times before producing the final state.
Finally, a fully-connected network maps the final state to the pixel
color.
In most tests, the reading and streaming architectures produced

results of similar quality (see Table 4), but the reading architecture
required longer training times. Still, the per-pixel architecture tends
to better capture interactions between objects (see Figure 5 for an
illustration). We hypothesize that the streaming approach makes
it challenging for the model to learn to modify the color of objects
after they have been drawn due to the sequential processing. The
reading operation, on the other hand, can read from multiple object
representations simultaneously via the max-pooling operation. Ad-
ditionally, it can perform reading operations with different weights
multiple times in sequence, which increases its flexibility even fur-
ther. If its cost could be reduced, the per-pixel architecture would
offer a compelling alternative.

Fig. 4. The per-pixel-read architecture performs multiple reading opera-
tions, which aggregate object representations independently for each pixel,
in sequence to produce a final state feature map. The final features are then
compressed into the final output image with a pixel generator similar to
the streaming renderer.

Reference Streaming arch. Reading arch.

Fig. 5. The streaming neural renderer fails to cast volumetric shadows
onto other objects. The per-pixel reading architecture is more expensive to
evaluate but can render the shadows correctly.

6 BOOLEAN OPERATIONS
For the extension to arbitrary boolean operations between geome-
tries, we use a simpler form of a graph, where each inner node can
have at most one child be another inner node. This allows us to
feed each boolean operation into the renderer with one of the scene
objects. We support four types of boolean operations: union, smooth
union, subtraction, and intersection.
In the renderer, we concatenate the output of the preprocessor

with the corresponding boolean operation. It is then the respon-
sibility of the recurrent block to interpret the boolean operation
correctly, i.e. to combine the previous LSTM state with the current
input. For the union operation in 2D, the LSTM has to function like
a normal z-buffer by drawing more recent shapes over the previous

ACM Trans. Graph., Vol. 40, No. 4, Article 164. Publication date: August 2021.



Neural Scene Graph Rendering: supplementary material • 164:5

ones. For other operations, the LSTM has to learn to alter the previ-
ous objects, e.g. by creating smooth transitions, or removing parts.
Our results show that the LSTM can learn to synthesize scenes made
with these boolean operations.

REFERENCES
Ivan Anokhin, Kirill Demochkin, Taras Khakhulin, Gleb Sterkin, Victor Lempit-

sky, and Denis Korzhenkov. 2020. Image Generators with Conditionally-
Independent Pixel Synthesis. arXiv e-prints, Article arXiv:2011.13775 (Nov. 2020),
arXiv:2011.13775 pages. arXiv:cs.CV/2011.13775

Jonathan Granskog, Fabrice Rousselle, Marios Papas, and Jan Novák. 2020. Composi-
tional Neural Scene Representations for Shading Inference. ACM Transactions on
Graphics (Proceedings of SIGGRAPH) 39, 4 (July 2020).

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive Growing
of GANs for Improved Quality, Stability, and Variation. In International Conference
on Learning Representations.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis. In ECCV.

Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. 2019. Scene Represen-
tation Networks: Continuous 3D-Structure-Aware Neural Scene Representations.
In Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
1119–1130.

ACM Trans. Graph., Vol. 40, No. 4, Article 164. Publication date: August 2021.

http://arxiv.org/abs/cs.CV/2011.13775

	Abstract
	1 Transformations
	1.1 Geometry transformations
	1.2 Texture transformations

	2 Optimal size of learned representations
	3 Quantitative evaluation
	4 Renderer architecture
	4.1 Progressive growing

	5 Per-pixel read architecture
	6 Boolean operations
	References

