
Neural Scene Graph Rendering

JONATHAN GRANSKOG, NVIDIA
TILL N. SCHNABEL, NVIDIA
FABRICE ROUSSELLE, NVIDIA
JAN NOVÁK, NVIDIA
We present a neural scene graph—a modular and controllable representa-
tion of scenes with elements that are learned from data. We focus on the
forward rendering problem, where the scene graph is provided by the user
and references learned elements. The elements correspond to geometry and
material definitions of scene objects and constitute the leaves of the graph;
we store them as high-dimensional vectors. The position and appearance of
scene objects can be adjusted in an artist-friendly manner via familiar trans-
formations, e.g. translation, bending, or color hue shift, which are stored in
the inner nodes of the graph. In order to apply a (non-linear) transforma-
tion to a learned vector, we adopt the concept of linearizing a problem by
lifting it into higher dimensions: we first encode the transformation into a
high-dimensional matrix and then apply it by standard matrix-vector mul-
tiplication. The transformations are encoded using neural networks. We
render the scene graph using a streaming neural renderer, which can handle
graphs with a varying number of objects, and thereby facilitates scalability.
Our results demonstrate a precise control over the learned object repre-
sentations in a number of animated 2D and 3D scenes. Despite the limited
visual complexity, our work presents a step towards marrying traditional
editing mechanisms with learned representations, and towards high-quality,
controllable neural rendering.

CCS Concepts: • Computing methodologies� Rendering; Neural net-
works.

Additional KeyWords and Phrases: rendering, neural networks, neural scene
representations, modularity, generalization

ACM Reference Format:
Jonathan Granskog, Till N. Schnabel, Fabrice Rousselle, and Jan Novák.
2021. Neural Scene Graph Rendering. ACM Trans. Graph. 40, 4, Article 164
(August 2021), 11 pages. https://doi.org/10.1145/3450626.3459848

1 INTRODUCTION
In recent years, computer-vision algorithms have demonstrated a
great potential for extracting scenes from images and videos in a
(semi-)automated manner [Eslami et al. 2018]. The main limitation,
common to most of these techniques, is that the extracted scene
representation is monolithic with individual scene objects mingled
together. While this may be acceptable on micro and meso scales, it
is undesired at the level of semantic components that an artist may
need to animate, relight, or otherwise alter.
Compositionality and modularity—patterns that arise naturally

in the graphics pipeline—are key to enable fine control over the
placement and appearance of individual objects. Classical 3Dmodels

Authors’ addresses: Jonathan Granskog, NVIDIA, jgranskog@nvidia.com; Till N. Schn-
abel, NVIDIA, till@familie-schnabel.de; Fabrice Rousselle, NVIDIA, frousselle@nvidia.
com; Jan Novák, NVIDIA, jnovak@nvidia.com.

© 2021 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3450626.3459848.

translation
(root node)

:

dg x dg
matrixTg1:

learned geometry and material representations

deformation

hue
shift

encoded
transformations

:

di�use
color

rotation scaling

:
translation

: :g1 g2 g4m1 m2 m3 m4

T1g,3

T1g,2

T ·
g,1

T1m,2 T2g,3

T2g,2

T3g,2 T4g,2T3m,1

T4m,1

𝑑g ×𝑑g

matrix

𝑑g ×𝑑g

matrix
𝑑m ×𝑑m

matrix

Fig. 1. Our scene graphs consist of leaf nodes (drawn as rectangles) that
contain learned vectors storing geometry (blue) and materials (pink), and
interior nodes that hold transformations (hexagons), and combine them
into object instances (blue-pink circles). Symbols and indices are explained
in Section 4 and 5. The geometry and material vectors, as well as encoding
of user-defined transformations and deformations, are learned from data.

and their laborious authoring, however, are ripe for revisiting as
deep learning can circumvent (parts of) the tedious creation process.
We envision future renderers that support graphics and neural

primitives. Some objects will still be handled using classical models
(e.g. triangles, microfacet BRDFs), but whenever these struggle with
realism (e.g. parts of human face), fail to appropriately filter details
(mesoscale structures), or become inefficient (fuzzy appearance),
they will be replaced by neural counterparts that demonstrated
great potential. To enable such hybrid workflows, compositional
and controllable neural representations need to be developed first.

We present one such attempt: a modular scene representation that
leverages learned object-level representations and allows transform-
ing them using familiar editing mechanisms. Our goal is to fulfill
the following constraints: i) geometry and materials shall be treated
as orthogonal and represented such that, ii) the artist can transform
the representations via linear and non-linear editing operations,
and iii) the number of objects and the overall composition can be
directly controlled. We propose to accommodate these constraints
using two simple, yet powerful concepts.

ACM Trans. Graph., Vol. 40, No. 4, Article 164. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459848
https://doi.org/10.1145/3450626.3459848

164:2 • Granskog et al.

First, we lift the representations of the scene elements and trans-
formations to a high-dimensional space; we borrow this concept
from support vector machines that linearize classification problems.
We represent geometry and materials using vectors, and transfor-
mations using matrices. Non-linear transformations, once lifted
to this high-dimensional space, can be performed using standard
linear algebra, i.e. vector-matrix multiplication. We obtain the high-
dimensional transformation matrices using neural networks: we
input the parameters of an editing operation into the network, which
outputs the matrix weights. The network is optimized such that
multiplying the matrix with any of the learned geometry (or mate-
rial) vectors yields the desired effect (e.g. shape translation, surface
deformation, or texture recoloring). To create a specific scene, we
allow the artist to organize the geometry and material vectors, and
the transformation matrices, into a neural scene graph: the vectors
are stored in leaf nodes, and the transformation matrices reside in
inner nodes altering the vectors inside the subgraph.

Second, we propose to render the scene graph using a streaming
neural renderer. The renderer processes objects sequentially, with-
out imposing a hard limit on their number, while correctly resolving
visibility and shading. We demonstrate scalability and artistic con-
trol on animated 2D and 3D scenes; animations are provided in
the supplementary video. Our approach preserves the fundamental
concepts of scene authoring, while sidestepping the minutiae of
evolving complex models from basic primitives; this task is replaced
by learning from data.
In this article, we focus on the forward rendering problem and

assume the scene graph is provided by the user. We do not present
a technique for handling complex, real-world environments; we are
currently far from that, dealing with scenes reminiscent of the early
years of computer graphics. Our present goal is to provide a scal-
able solution that handles environments with arbitrary numbers of
(simple) elements, each represented by a neural representation that
can be further transformed and manipulated. Our focus is therefore
on the modularity and controllability of the neural scene represen-
tation. While our work does not unlock any immediate applications,
we believe such representations will play a central role in bringing
neural rendering to the practical realm.

2 RELATED WORK
Developing efficient neural methods for representing and manipu-
lating scenes is an active area of research. We now discuss the most
related work on neural scene representations and compositionality
of learned representations; see the report by [Tewari et al. 2020] for
a thorough review.

Neural scene representations. A popular representation that aligns
well with convolutional architectures are voxel grids [Lombardi
et al. 2019; Nguyen-Phuoc et al. 2019, 2020, 2018; Olszewski et al.
2019; Rematas and Ferrari 2020]. For example, Nguyen-Phuoc et al.
[2018] input a single grid representing an object to a network to
render novel views. Similarly, Rematas and Ferrari [2020] improve
visual fidelity by learning to render global illumination for scenes
consisting of an area light, a ground plane, and a single 3D object.
Lombardi et al. [2019] render more complex objects, such as human
faces, with learned warped volumetric grids.

Tatarchenko et al. [2016] encode a rendered image of an object
into a latent representation such that the object can be rendered from
other views. Similarly, Eslami et al. [2018] utilize multiple images to
produce a view-invariant representation for novel view synthesis of
static scenes composed of multiple objects. Granskog et al. [2020]
further partition the representation into material, lighting, and ge-
ometry components and, similarly to neural textures [Thies et al.
2019], rely on a classical rasterizer to resolve primary visibility and
achieve sharp predictions.
Implicit representations, such as signed distance fields, are used

in many recent works [Mescheder et al. 2019; Niemeyer et al. 2020;
Oechsle et al. 2019, 2020; Park et al. 2019; Sitzmann et al. 2019].
Neural radiance fields (NeRF) [Mildenhall et al. 2020] rendered via
ray marching represent a promising direction for both static and
dynamic scenes [Guo et al. 2020; Li et al. 2020; Liu et al. 2020; Ost
et al. 2020; Park et al. 2020; Pumarola et al. 2020; Xian et al. 2020].

Point cloud representations have also been used, e.g. for learning
light transport [Hermosilla et al. 2019; Sanzenbacher et al. 2020],
and novel view synthesis [Aliev et al. 2020].

In contrast to the aforementioned approaches utilizing traditional
graphics representations and rendering algorithms, we rely solely
on neural rendering and abstract vector representations, much like
the approach of Eslami et al. [2018] and its derivatives. This design
choice comes at the cost of reduced rendering quality, but it facili-
tates developing a general approach, which can be combined with
stronger graphics priors in the future.

Compositionality and controllability. Generalization, scalability,
and artistic control belong to actively sought features of neural
representations [Tewari et al. 2020] as many of the aforementioned
methods offer these in limited degree; we list a few examples here.
Both Nguyen-Phuoc et al. [2018] and Rematas and Ferrari [2020]
allow camera and lighting changes in single-object scenes. The gen-
erative method of Chen et al. [2021] also includes control over shape
and appearance. Eslami et al. [2018] use scene “algebra” to perform
basic scene manipulations, albeit with a rather coarse control over
the edits. The extension by Granskog et al. [2020] allows changing
also the appearance and lighting, but only on scene level; altering in-
dividual objects is not possible. Thies et al. [2019] can apply learned
neural textures to new scene objects. Nguyen-Phuoc et al. [2019]
and Olszewski et al. [2019] allow scaling and rotation of neural
grids. Liu et al. [2019] propose scene programs, a syntax for building
scenes, to enable controllable neural image generation.
Latent representations in image generation networks, such as

in generative adversarial networks [Goodfellow et al. 2014], lack
explicit control and interpretability. As such,manyworks [Chen et al.
2016; Karras et al. 2019, 2020; Kulkarni et al. 2015; Nie et al. 2020]
learn to disentangle latent representations to improve interpretation
and stylization, but rarely feature precise control over placement
and the disentanglement may be only partial. Härkönen et al. [2020]
extract principal directions of latent representations in pre-trained
networks to discover useful axes of control.

The limited degree of control and scalability in most prior works
is because these features are often not the primary goal; they appear
as a byproduct of pursuing a different target.

ACM Trans. Graph., Vol. 40, No. 4, Article 164. Publication date: August 2021.

Neural Scene Graph Rendering • 164:3

Scene graphs in neural rendering. Prior works have applied scene
graphs, containing object classes and relational descriptors, to real-
istic 2D image generation [Ashual and Wolf 2019; Herzig et al. 2020;
Ivgi et al. 2020; Johnson et al. 2018]. BlockGAN [Nguyen-Phuoc
et al. 2020] synthesizes images of novel views from a neural voxel
grid scene representation, which is computed by aggregating object-
specific grid representations. Transformations can be applied to the
bounding boxes of object representations before aggregation to ad-
just their location. Ehrhardt et al. [2020] further model inter-object
relationships with an additional interaction module.
Concurrent to our work, Ost et al. [2020], Guo et al. [2020] and

Niemeyer and Geiger [2021] propose to decompose a scene into mul-
tiple neural radiance fields [Mildenhall et al. 2020], and manipulate
them by transforming their bounding boxes. Similar to BlockGAN,
this approach is powerful as it allows leveraging traditional 3D
transformations on top of a learned object representations.

We pursue the same goal of direct control over the placement of
scene elements, but in a different setup: we do not prescribe a specific
interpretation (such as voxel grids or signed-distance fields) over the
geometry representation. We also strive for a wider gamut of linear
and non-linear transformations and propose a unified approach
based on linearly transforming high-dimensional embeddings.

3 CLASSICAL SCENE GRAPHS
Scene hierarchies—scene graphs—are often used to compose com-
plex scenes from basic geometric primitives, transformations, or
material definitions. In order to relate our neural model to existing
scene graphs, we first review a specific type of scene graphs here
and describe how our approach maps to it in the next section.
We assume a directed acyclic scene graph where geometry and

appearance data is stored in outer (terminal) nodes; see Figure 1. All
outer nodes are reachable by traversing the graph from a single root
node representing the entire scene. An inner node represents either
a geometry transformation, material transformation, or linking of a
geometry to a material. Branching occurring at a transformation
node (e.g. root node) corresponds to geometries or materials sharing
the same transformation. Merging of edges at a child node (e.g. node
g2) indicates instancing: the same subgraph is duplicated multiple
times in the scene using different transformations.

Preparation for rendering. In order to render the scene graph, we
visit all outer nodes performing the following steps for each of them:

(1) We identify each unique path from the outer node to the root
node of the graph.

(2) For each path, we collect transformation nodes in order of
their appearance on the path, compute the total transforma-
tion, and apply it to the outer node.

(3) Geometry and material paths that are merged using a link
node (illustrated by blue-pink circles and edges in Figure 1)
are input into the renderer together.

This procedure yields a list of transformed geometry-material
pairs that will be passed to the renderer to produce the final image.
For the illustration in Figure 1, the list would contain a teapot, two
instances of a mug, and a table, each with a different material.
The main contribution of this article is the application of the

scene graph concept to neural scene representations.

4 NEURAL SCENE GRAPH
In this section, we detail the representations used in the outer and
inner nodes of the neural scene graph. We do not prescribe any
specific interpretation of the geometry and material representations,
e.g. meshes, voxel grids, or textures. Instead, we consider shapes
and materials as points in high-dimensional spaces (Section 4.1).
We rely on linear algebra in the high-dimensional space to apply
classical shape and material transformations (Section 4.2), which
may themselves be non-linear in 2D and 3D. Specifically, in order
to transform a 𝑑-dimensional representation, we multiply it by an
encoded 𝑑 × 𝑑 transformation matrix. The optimization of the ge-
ometry and material representations and neural networks, which
encode the transformations, is described in Section 4.3.

4.1 Outer nodes
We use a common abstract representation for both geometry and
material elements of the scene: points in high-dimensional spaces,
stored as vectors. The representation is dissociated from any specific
geometric interpretation, like triangle meshes; we let the model form
its own interpretation. Using such abstract representations provides
a unified handling of geometry and materials, and a convenient way
of assigning amaterial to a geometric shape bymerely concatenating
their vectors; we use 32-dimensional vectors in all our experiments.

Geometry. An outer geometry node stores a learned representa-
tion of a canonical geometric shape. The representations of indi-
vidual canonical shapes are extracted from the training dataset. In
our experiments, we use relatively simple geometries (sphere, torus,
teapot, etc.), but the canonical elements can theoretically be as com-
plex as a human face in the neutral pose, which is then deformed or
animated using transformation nodes of the graph. Each canonical
representation is encoded using a vector g ∈ R𝑑g .

Materials. Visual appearance of an object is typically described
using one of the many surface and volumetric models. These can
range from low-parametric, physically based scattering functions
that are driven by textures like the Burley BSDF [Burley 2012] to
high-dimensional texture functions (BTFs). We encode each unique
material class (e.g. plastic material, volume, textured diffuse) using
a vector, m ∈ R𝑑m , where 𝑑m specifies the dimensionality.
Figure 2 demonstrates the orthogonality of geometry and mate-

rials. The first two rows show two canonical geometry vectors g
that are assigned three different canonical materials: diffuse, glossy,
and volumetric (columns). The appearance is further adjusted by
applying a material transformation that we discuss next. The third
row shows multiple objects in one scene.

4.2 Inner nodes
Our scene graphs can contain two types of inner nodes: n-ary nodes
that transform (possibly multiple) geometry or material vectors
(hexagons in Figure 1), and binary nodes that link geometry to
material (blue-pink circles). We will now detail the transformation
nodes and the encoding of the transformations.

Transformations. Our goal is to let the user alter the geometry
and material representations using familiar transformations, such
as translation and rotation of geometry, and re-coloring of diffuse

ACM Trans. Graph., Vol. 40, No. 4, Article 164. Publication date: August 2021.

164:4 • Granskog et al.

Diffuse Metallic Volume
Prediction Reference Prediction Reference Prediction Reference

Fig. 2. Combinations of (learned) geometry g and material m represen-
tations rendered with our neural renderer (odd columns) and a reference
renderer (even columns). Each material representation is left-multiplied by a
𝑑m ×𝑑m color-transformation matrix to alter the base color of the canonical
material. The bottom row shows scenes with multiple geometries that are
assigned the same canonical material but different color transformations.

textures. To unify handling of arbitrary transformations, we choose
to represent each transformation using a high-dimensional ma-
trix, and we apply the transformation by left-multiplying the mate-
rial/geometry column vector by the matrix. More formally, trans-
forming a representation vector x using a parametric transformation
𝑓 with parameters 𝛾 is defined as:

𝑓 (x;𝛾) := T · x , where T = ℎ(𝛾 ;𝜃) .

The transformation matrix T ∈ R𝑑×𝑑 is obtained using an encoding
function ℎ.

Encoding. The parameters 𝜃 of the encoding function ℎ(·;𝜃) are
optimized such that the matrix-vector product T · x corresponds to
applying the transformation to the learned representation. We use
an ensemble of neural networks to represent ℎ; one for each distinct
set of transformations.

For instance, all classical 3D projective transformations that can
be represented using 4×4 matrices (we use translation, rotation, scal-
ing, and skewing) are encoded using the same neural network. This
network takes the flattened 4×4 matrixQ as input and produces the
corresponding high-dimensional matrix: Tproj3D = ℎproj3D (Q;𝜃).
Deformations, such as twirl and bending, that have either a very
unique visual impact and/or a different set of input parameters are
encoded using their own dedicated networks. Material transforma-
tions are handled analogously. A complete list of the transformations
is provided in the supplementary material.

All encoding networks are fully-connected perceptrons with three
layers that have 𝑑 , 𝑑2, and 𝑑2 neurons, respectively. The input layer
has dimensionality matched to the size of the parameters set |𝛾 |.
The output layer contains 𝑑2 values of the linearized matrix T. For
geometric transforms 𝑑 := 𝑑g; for material transforms 𝑑 := 𝑑m.
Since we use 32-dimensional material and geometry representation
vectors in all our experiments, i.e. 𝑑m = 𝑑g = 32, the encoding
function ℎ always outputs a 32×32 transformation matrix T. See the
supplementary material for comparisons of different vector sizes.

No deformation Twirl Bend
Prediction Reference Prediction Reference Prediction Reference

Fig. 3. Examples of user-defined edits—twirl and bend—whose parameters
are encoded using a neural network into a transformation matrix that left-
multiplies the triangle and star geometry representations.

Original Hue shift Grayscale Texture shear
Reference Prediction Reference Prediction Reference Prediction Reference

Fig. 4. Material transformations (hue shift, grayscale, shearing) applied to
two material vectors (rows), each representing a different texture.

Figure 3 shows two geometric deformations applied to two 2D
shapes. Figure 4 shows three material transformations, that change
colors and mapping of the textures; each texture is represented by a
dedicated material vector.

4.3 End-to-end training
As we aim to eventually sidestep the tedious authoring of scene as-
sets, e.g. by extracting canonical representations from photographs,
we require an end-to-end training procedure. This in turn requires
a differentiable renderer; we propose one in Section 5.
To extract the canonical representations and to optimize the en-

coders and the renderer, we iterate the following procedure. We start
with a target image and a corresponding scene graph. We encode all
transformations in the graph and apply them to the representations
stored in the outer geometry and material nodes. The transformed
representations are input into the renderer, and the rendered image
is compared to the target. The resulting error gradients are then
propagated back to adjust the parameters of the renderer, trans-
formation encoders, and the values of canonical representations
present in the scene. We detail the optimization in Section 6.

4.4 Discussion
Our choice of representing 2D and 3D (non-linear) transformations
using a linear operation—matrix multiplication—exploits the fact
that non-linear, low-dimensional transformations can be approxi-
mated well by linear transformations in higher-dimensional spaces;
our reasoning is analogous to the kernel trick used in support vector
machines [Cortes and Vapnik 1995]. This observation enables our

ACM Trans. Graph., Vol. 40, No. 4, Article 164. Publication date: August 2021.

Neural Scene Graph Rendering • 164:5

Rendering stream

Recurrent block

LSTM

Preprocessor

Streaming renderer

LSTM

Preprocessor

LSTM

Preprocessor

Pixel
generator

Rendered
RGB image

𝐴

ĝ1 m̂1 ĝ2 m̂2 ĝ𝑁 m̂𝑁

P1 P2 P𝑁

H0

C0

H𝑁

𝐼

Fig. 5. We render the scene graph by collapsing it into a stream of trans-
formed geometry and material representations. These are concatenated and
sequentially input into a recurrent unit (preprocessor and an LSTM). After
the stream is processed, the hidden state of the LSTM is converted into an
RGB image using a pixel generator. 3D boxes and orange rectangles depict
data tensors and trainable layers, respectively.

unified treatment across simple and complex transformations for
both geometry and materials, and minimally constrains the model.
It is worth noting that the trainable model still has the option

of relying on low-dimensional (e.g. 3D) transformations and using
the remainder of dimensions for storing transformation-invariant
information about the shape, such as topology information. In such
cases, the encoded matrices Twould feature rows and columns filled
with zeros, except for entries on the main diagonal.

5 STREAMING NEURAL RENDERER
Renderers need to handle scenes containing an arbitrary number
of elements. Many prior works assume a fixed-size, neural scene
representation [Eslami et al. 2018; Granskog et al. 2020] and there-
fore cannot adapt to increasing scene complexity. We propose a
streaming architecture to render our scene graphs. The streaming
design is key to support variable scene content and to permit scaling
up the scene complexity beyond what the model was trained on.

Rendering stream. We first collapse the scene graph into a stream
of objects using the procedure described in Section 3. The stream 𝐴

consists of 𝑁 transformed and concatenated geometry and material
vectors (⌣ denotes concatenation):

𝐴 =

ĝ𝑖 ⌣m̂𝑖 : ĝ𝑖 = ©­«
𝐾 (𝑖)∏
𝑘=1

T𝑖g,𝑘
ª®¬ · g𝑖 , m̂𝑖 = ©­«

𝐿 (𝑖)∏
𝑙=1

T𝑖m,𝑙
ª®¬ ·m𝑖

𝑖=1..𝑁 ,

PixGen(H1) PixGen(H2) PixGen(H3)

Pr
ed
ic
tio

n
Re

fe
re
nc
e

Fig. 6. The hidden state of the LSTM captures the content of the scene
at any point of processing the rendering stream. The rendered image is
obtained by running the final hidden state through a pixel generator. Here
we visualize the hidden state after processing each object in the stream.

where, for the 𝑖-th object in the stream, the matrix T𝑖g,𝑘 represents
the 𝑘-th geometric transformation matrix on the path from the
root to the leaf node (containing g𝑖); 𝐾 (𝑖) is the total number of
geometric transformations along the path. Material transformations
T𝑖m,𝑙 and their number 𝐿(𝑖) are defined analogously.

5.1 Architecture
The renderer 𝑟 is tasked with generating image 𝐼 from the stream
𝐴, i.e. 𝐼 = 𝑟 (𝐴;𝜙), where 𝜙 are the trainable parameters of the
renderer. We leverage a recurrent architecture consisting of three
trainable components: a preprocessor, an LSTM cell [Hochreiter and
Schmidhuber 1997], and a pixel generator [Sitzmann et al. 2019];
see Figure 5. The preprocessor and the LSTM cell form a recurrent
block. The recurrent block sequentially processes individual objects
in the rendering stream and maintains an internal representation of
the scene, which is later converted into the image 𝐼 .
The task of the preprocessor is to map the 𝑖-th high-dimensional

point in the stream—the concatenation ĝ𝑖 ⌣m̂𝑖 which has 64 dimen-
sions in our experiments—to a featuremap P𝑖 .We use an upsampling,
convolutional network that outputs P𝑖 as a 𝑐 × ℎ ×𝑤 tensor, where
𝑐 is the number of 2D features in the map, and ℎ and 𝑤 are set to
the height and width of the rendered image, respectively.
The map P𝑖 is input into the LSTM cell. The cell has the ability

to aggregate and retain information across long streams of inputs
by maintaining a cell state C and a hidden state H; see Hochreiter
and Schmidhuber [1997] for details. The states have the same di-
mensionality as the feature map P and are initialized to zeros before
rendering. Each of the four trainable components of the LSTM is
implemented using a convolutional layer with 5 × 5 filters.
The preprocessor and the LSTM cell are executed iteratively—

once for each object in the stream—with C and H being input into
the LSTM in the next iteration. When all objects are processed, the
hidden state of the LSTM is fed into a pixel generator that outputs
the final image. The pixel generator is an MLP with three fully-
connected layers that maintain the dimensions of P, except for the
third layer that outputs only three channels—the RGB components of
the rendered image 𝐼 . Figure 6 shows a sequence of images obtained
by running the pixel generator after every object in the stream.

ACM Trans. Graph., Vol. 40, No. 4, Article 164. Publication date: August 2021.

164:6 • Granskog et al.

Additionally, we observed a slight increase in model stability when
concatenating 2D image-space coordinates encodedwith themethod
of Tancik et al. [2020] to each preprocessor output P𝑖 and to each
layer input in the pixel generator.
While the scene graph representation is general, the rendering

architecture is likely worth revisiting in the future. We present
another promising architecture in the supplementary material.

6 OPTIMIZATION
In this section, we describe an end-to-end approach for extracting
the vectors of canonical geometries and materials (Section 4.1) and
optimizing the transformation encoders (Section 4.2) and the stream-
ing neural renderer (Section 5). We train all components jointly
using a synthetic dataset, where each dataset entry comprises:

• a list of 𝑁 random geometry and material identifiers,
• a set of 𝐾 (𝑖) and 𝐿(𝑖) random geometric and material trans-
formations for each 𝑖-th geometry and material identifier,
respectively (𝐾 (𝑖) and 𝐿(𝑖) is randomized between 0 and 8),

• a ground-truth rendering 𝐼 of the transformed, shaded objects
with a static floor and static (image) background.

For each training entry 𝑘 , we assemble the rendering stream 𝐴𝑘 ;
the geometry and material identifiers are used to select the corre-
sponding canonical vectors. We then render the image 𝐼𝑘 = 𝑟 (𝐴𝑘 ;𝜙)
and evaluate its loss to the reference 𝐼𝑘 .

The loss consists of a VGG term [Simonyan and Zisserman 2015;
Zhang et al. 2018] for improved sharpness and a negative log-
likelihood term utilizing a normal distribution with annealed stan-
dard deviation [Eslami et al. 2018]; we decrease the deviation from
2.0 to 0.7 over the first 10k iterations. The optimal balance between
the two loss terms was found by a parameter sweep for each dataset.

We use the Adam optimizer [Kingma and Ba 2015] with a learning
rate of 10−4, which is divided by

√
10 when approaching conver-

gence to facilitate it. We initialize the weights of all networks as
proposed by He et al. [2015] and the representation vectors using
the standard normal distribution.
We train our networks for approximately one million iterations

(roughly 7 days on a single NVIDIA V100 GPU) with a batch size of
16 entries. Training records are generated online and each contains
up to four random objects. The ground-truth image 𝐼 is rendered
online using a rasterizer or a signed distance field renderer.

7 RESULTS
We implemented our proposed streaming neural renderer architec-
ture (Section 5) using Pytorch [Paszke et al. 2019], and applied it
to neural scene graphs (Section 4). As the focus of our work is on
controllability and compositionality, we designed a set of simple
experiments to highlight these two characteristics.
While our results do not feature high complexity, they suggest

good generalization. In particular, we stress that our network was
only trained on images featuring a handful of objects (up to four
typically, see Figure 13) with random geometry and material trans-
formations. Also, we present temporally stable animations, as well as
results with a scene containing an order of magnitude more objects
than seen during training. This generalization comes as a by-product
of our architecture, not through specialized solutions such as using

No twirl Moderate twirl Large twirl
Prediction Reference Prediction Reference Prediction Reference

N
o
be
nd

So
m
e
be
nd

La
rg
e
be
nd

Fig. 7. A material (here a 2D texture) can be deformed by successively
applying multiple deformations, i.e. chaining corresponding transformation
nodes in the scene graph. Here we show a combination of bending (rows)
and twirling (columns) with different intensities.

a temporal coherence loss; our network actually never “saw” an an-
imation during training. To highlight the direct artistic control over
the scene graph, most of the results are animated using traditional
curve-based animation tools. Please see the supplementary video.

7.1 Orthogonality
The orthogonality of geometry, material and transformation is fun-
damental in a scene graph, and arguably the key ingredient of com-
positionality. As demonstrated in Figure 2, our approach preserves
this orthogonality. The figure features three types of geometry
(sphere, cube, torus), three types of materials (diffuse, metallic, vol-
ume), and uses affine transformations to position the scene elements.
While our results lack sharpness, they do reproduce the distinctive
appearance of each material, irrespective of the underlying geome-
try and transformation. In particular, we observe view-dependent
highlights for metallic materials, and colored shadows as well as
transparency for volumetric materials.

An important consideration with transformations is the ability of
chaining them. This is trivial when considering only transformations
that can readily be encoded in 4Dmatrices (rotation, translation, scal-
ing), as we can first multiply the 4Dmatrices and encode directly the
product. In Figure 7, we illustrate a more challenging scenario where
we combine order-dependent, non-linear transformations (twirl and
bend) while varying the magnitude of each transformation. As with
our previous experiment, the network is capable of faithfully repro-
ducing the reference behavior. We note, however, that achieving
analogous results in 3D was considerably more challenging; results
with reasonable quality required significantly longer training times.

7.2 2D animations
A classical use case where scene graphs are employed is animation,
where the scene state is prescribed at key frames and smoothly
interpolated for all in-between frames. In order to generate such an
animation, we simply render every frame independently, as would
be done with a standard renderer. As can be seen in the supplemental
video, this results in temporally stable animations.

ACM Trans. Graph., Vol. 40, No. 4, Article 164. Publication date: August 2021.

Neural Scene Graph Rendering • 164:7

Frame 245 Frame 284 Frame 350

Pr
ed
ic
tio

n
Re

fe
re
nc
e

Fig. 8. Three frames from an animation with tangram shapes that gradually
morph from one assembly into another. The twirl deformation is applied to
individual pieces during the transition. Please see the supplementary video
for the full animation.

Tangram animation. Figure 8 shows a few frames of an animation
with basic colored shapes. The complete model (shape and material
representations, transformation encoders, and the renderer) was
trained on rendered images containing squares, triangles, and paral-
lelograms; we used up to four shapes in each image. Each training
image corresponds to a scene graph that contains transformation
nodes for translating, rotating, scaling, and twirling the shapes, and
transformation nodes for coloring materials. The model therefore
utilized three geometry vectors and one material vector represent-
ing a constant neutral color. We employed three encoders: one for
the 2D affine transforms, one for the twirling transform, and one
for the coloring transform.

The animation (rendered at 256 × 256 resolution) features seven
shapes that were scaled and colored to resemble tangram puzzle
pieces. The pieces are animated in order to gradually morph between
different puzzle assemblies. The supplementary video demonstrates
good temporal stability and a close match to reference renders; the
most notable artifact is slightly inaccurate alignment of objects.

Sprite animation. Figure 9 shows images from a 2D sprite ani-
mation. The model uses a single geometry vector—all objects are
rendered as a transformed square—and 16 material vectors, each rep-
resenting one of the alpha-masked textures used in the animation
as sprites. During training, the shape instances are randomly trans-
lated, rotated, flipped, and skewed and each instance is assigned
one of the 16 textures.
The test images (rendered at 256 × 256 resolution) demonstrate

good agreement in placement of individual sprites; the main defi-
ciency is the lack of detail in some textures. Across all our exper-
iments with this setup, the texture detail matched the references
better in low-resolution settings than in high-resolution ones. This is
likely due to insufficient training time, or insufficient size of material
representations to hold the fine details needed at higher resolutions.

Frame 38 Frame 249 Frame 488

Pr
ed
ic
tio

n
Re

fe
re
nc
e

Fig. 9. Frames from a 2D sprite animation featuring 16 alpha-masked
textures that are instantiated over a static background image. The prediction
attains most of the texture detail. Artifacts appear primarily where two
“ground” tiles meet due to slightly softer reproduction of texture edges.

7.3 3D experiments
In a 3D setting, the renderer has to handle perspective projection,
shadowing, occlusions, and shading. The setup is therefore more
complex than in the 2D case, resulting in longer training times and
reduced accuracy. The problem statement, however, remains the
same: given a stream of transformed geometry-material pairs, the
neural renderer must reproduce the target image.
We trained the model using simple geometric primitives, e.g.

sphere, cube, torus, and two meshes (the Utah teapot and Suzanne
the monkey). We used 3D projective transforms for controlling the
placement of the geometry, and a color transformation to adjust the
base color of one of the three materials: diffuse, Phong, and volumet-
ric. We also experimented with texturing the objects using surface
and volumetric textures, but the model struggled with preserving
the details except for very simple checkerboard patterns, hence we
excluded texturing from the results. The only textured objects are
the floor and the background, which are both held static during
training; the renderer can thus easily memorize them. The scenes
are lit by a single point emitter.

Bouncing tori. In Figure 10, we show an animation of two bounc-
ing tori playing volleyball with a volumetric sphere. The model
was trained using spheres and tori with diffuse or volumetric ma-
terials, and translation, rotation, scaling, and coloring transforma-
tions. Most effects are correctly reproduced in our results, including
ground shadows, material appearances, and geometric transforma-
tions. The key missing component in our results is the shadows cast
onto dynamic scene elements. For instance, the red shadow cast
by the volumetric sphere onto the orange torus (visible in the left-
most column reference image) is completely missing in the network
prediction. We speculate that the issue is due to the difficulty of
maintaining a sufficiently rich scene representation in the LSTM
state while rendering, compounded with the fact that such shadows
are only sporadically present in training images.

ACM Trans. Graph., Vol. 40, No. 4, Article 164. Publication date: August 2021.

164:8 • Granskog et al.

Frame 77 Frame 112 w/ volumetric tori

Pr
ed
ic
tio

n
Re

fe
re
nc
e

Fig. 10. Two diffuse tori playing beach volleyball with a volumetric ball. In
the right-most column, the materials of the ball and tori are swapped.

Occlusions. Complex occlusion scenarios can rapidly arise when
authoring scenes, however, it is not clear whether training with
random scene configurations leads to sufficient robustness in that
regard. In Figure 11, we visualize two molecules to test overlaps
and occlusions. The left molecule is represented using 24 inter-
secting spheres, the right one consists of 14 spheres and cylinders.
The model for rendering these results was trained using images
containing up to eight spheres and cylinders. The intricate object in-
tersections are adequately captured, suggesting the neural renderer
should scale well to more complex assemblies.

Scalability. In Figure 12, we perform a scalability stress test by ren-
dering a coarse head sculpture using 250 cylinders. The model was
trained with up to 4 objects using various types of geometry (sphere,
cube, torus, cylinder, capsule) and transformations (translation, rota-
tion, scaling, coloring). This result demonstrates a surprisingly good
scalability, albeit with darker and less saturated colors. Neverthe-
less, the overall appearance remains visually consistent suggesting
a graceful degradation of the network performance as its modeling
capacity is progressively overloaded.

8 DISCUSSION AND FUTURE WORK
This section first highlights some specificities of our approach, and
then discusses key limitations and outline research directions.

8.1 Discussion
Transformations. We chose to represent arbitrary (non-)linear

transformations using high-dimensional matrices constructed using
learned encoders, and applied using matrix-vector multiplication.
We also considered transforming the learned tensors using a neural
network directly. This might offer some advantages, especially for
highly non-linear deformations and pattern generators, but it would
not feature the associativity of matrix multiplication. The associativ-
ity, while not required, allows combining chains of transformations
into a single matrix; a feature that applications may benefit from.

Prediction Reference Prediction Reference

Fig. 11. Handling of occlusions and overlaps between many objects orga-
nized in molecular structures of glucose (left) and nitromethane (right). The
model was trained with up to eight objects per scene.

Pr
ed
ic
tio

n
Re

fe
re
nc
e

Fig. 12. Scalability stress test. The sculpture is made of 250 instances of
cylindrical geometry and rendered with a model trained on scenes with up
to 4 objects. The images display the sculpture from different viewing angles;
this was achieved by rotating all instances around a common axis.

Representation-renderer coupling. End-to-end optimization leads
to learned representations that are tightly coupled to the renderer.
While this prevents adding new geometries and materials, similar
couplings exist in classical renderers, e.g. a rasterizer cannot directly
render a signed distance field. Still, the coupling in data-driven
approaches is more prominent and our approach is no exception.

Generalization. Although our model cannot generalize to geom-
etry and materials that it was not trained on, it can synthesize
images with geometry-material combinations not seen during train-
ing. In this experiment, we leverage two renderers: a rasterizer and
a signed-distance-field (SDF) renderer. The rasterizer does not sup-
port volumes, but it can handle triangle meshes, such as the Utah
teapot. The SDF renderer cannot render such meshes, but features
the complementary volumetric material; examples of training im-
ages are shown in Figure 13. In Figure 14, we show that the model
can render the teapot geometry with a volumetric material without
ever observing this combination during training.

The result suggests that we could eventually combine real-world
and synthetic elements in a data-driven manner, e.g. by learning
the appearance of a cat from photographs and applying it to a
learned representation of a virtual geometry. The main requirement
to enable such generalization is to provide a sufficient overlap in
the content of the natural and virtual image sets (i.e. objects that
exist in both to reduce the chances of set-specific performance).

ACM Trans. Graph., Vol. 40, No. 4, Article 164. Publication date: August 2021.

Neural Scene Graph Rendering • 164:9
SD

F
re
nd

er
Ra

st
er
iz
er

Fig. 13. Example target images of scenes used for training the model in
Figure 14. We used two renderers, an SDF renderer and a rasterizer. Certain
geometries, such as the teapot, can only be rendered using the rasterizer.
The rasterizer, however, supports only a subset of the materials. Specifically,
the volumetric appearance is only achievable with the SDF renderer.

Compositionality and scalability. We are not the first to impose a
structure over neural representations. However, prior works either
operate at the scene level [Granskog et al. 2020; Härkönen et al.
2020; Kulkarni et al. 2015; Nie et al. 2020], or rely on learned repre-
sentations of standard graphics primitives, e.g. voxel grids [Nguyen-
Phuoc et al. 2019, 2020, 2018; Olszewski et al. 2019; Rematas and
Ferrari 2020], textures [Thies et al. 2019], and implicit volumetric
representations [Mildenhall et al. 2020; Ost et al. 2020]. Our model
provides a wider gamut of geometric and material transformations,
enabling precise artistic control; see the accompanying video.

Furthermore, the streaming renderer allows increasing the object
count by an order of magnitude compared to the training scenes;
fixed-size representations are more constrained in that respect.

8.2 Future Work
Geometry and material tensors. The size of our neural scene rep-

resentation is adaptive, i.e. it grows and shrinks with the number
of scene objects. The individual objects, however, are represented
using vectors of fixed height. Scaling up the complexity of individ-
ual scene elements requires increasing the height and results in
quadratic growth of the transformation matrices.
We believe this can be rectified by simply replacing the “tall”

column vector with a concatenation of many short ones, with their
number adapted to the complexity of the object. Using such rank-2
representation tensors would force the model to break the learned
representation into elements (tensor columns) that undergo the
same treatment. This is analogous to how complex meshes are
handled in the graphics pipeline: the model is broken into smaller
elements, e.g. vertices, that undergo the same set of transformations.

Our ongoing experiments with (geometry) tensors show promis-
ing results. The main culprit is the mapping of material to geometry;
simple concatenation is not possible as the width of the two tensors
may differ. We believe the mapping can be handled by a trainable
“texturing” unit; we leave this development for future work.

Content-dependent training performance. We observed poor learn-
ing with ambiguous scene configurations. For instance, translating
the geometry and the texture in opposite directions produces an
image largely identical to one without any translation. The system
might eventually learn to recognize both translations correctly as
some pixels still differ between the two configurations. Nevertheless

Reference (solid diffuse) Predicted (solid diffuse) Predicted (volumetric)

Fig. 14. The trained model never experienced a volumetric teapot during
training, yet the neural renderer is capable of generalizing the volumetric
appearance that it observed on other geometries. It is capable of rendering
the teapot as a semi transparent volume, and thereby revealing a torus
placed behind the teapot.

Square Circle smooth union Star subtraction Sphere intersection

Pr
ed
ic
tio

n
Re

fe
re
nc
e

Fig. 15. Our prototype of neural computer-solid-geometry graphs allows
combining 2D shapes using boolean operations: we combine a square (first
column) with four circles (second column) using a “smooth” union operation.
Four stars are the subtracted (third column) and the assembly intersected
with a white sphere that desaturates the colors (last column).

the visual quality achieved (at equal training time) in such exper-
iments was significantly lower than in simpler setups, e.g. when
translating only the geometry and rotating only the textures.

Our current framework does not allow direct control of the cam-
era. Instead, we control the placement of objects, which is function-
ally equivalent; see Figure 9 for an illustration of a horizontal camera
pan. Based on our experiments with texture transformations, we
expect combining camera and geometry transformations to hinder
training. Additional work is needed to address this issue, e.g. with a
curriculum-based learning approach [Bengio et al. 2009].

Lighting. In addition to static backgrounds, all our experiments
used static lighting. Allowing arbitrary of a single light source
should be well within the modeling capacity of our framework—the
parameters of the light could be input alongside each object. Thanks
to the linearity of light transport, one could handle multiple light
sources by linearly combining multiple rendered images—one for
each light source. However, as long as rendering artifacts prevail,
combining multiple renders also means combining multiple artifacts.
An alternative would be to add a recurrent block to iterate through
all light sources for each object. We leave these investigations for
future work.

ACM Trans. Graph., Vol. 40, No. 4, Article 164. Publication date: August 2021.

164:10 • Granskog et al.

Constructive solid geometry. Extending our framework to handle
boolean operators such as union, difference, and intersection would
enable constructive solid geometry (CSG) techniques common in
computer aided design. We implemented a proof of concept by
leveraging a postfix streaming architecture (where we first provide
the geometry representations, and then the operator to be applied),
and show the results in Figure 15. We note that this result required
a different scene graph parser (involving two passes with distinct
implementations), suggesting some refactoring of our framework is
needed to properly handle CSG techniques—we provide details in
the supplementary material. Nevertheless, our result is encouraging
and suggests this is an avenue worth investigating.

Graphics priors. Our model embeds a number of graphics priors:
i) orthogonality of geometry and materials, ii) explicit placement of
geometry, and iii) universality of transformations—each impacting
every object in the same way. The proposed renderer, however,
remains fairly generic aside for the streamed processing that aids
scalability. Embedding additional graphics priors is likely to further
improve visual results. For instance, ray-marching through a neural
light field [Mildenhall et al. 2020] has shown great potential and
permits compositionality in a straightforward manner: each object
in the scene can be represented using a distinct neural radiance
field, which can be positioned by transforming its bounding box.
The concurrent work by Ost et al. [2020] represents a commendable
effort in this direction. One limitation of radiance fields is that
materials are effectively baked in the representation. Our approach
is more general, but the burden of learning visibility and masking
from scratch—as opposed to querying the model at ray-marched
3D points—is likely to lower the prediction quality. We believe both
approaches are worth developing further.

9 CONCLUSION
We have described a neural scene representation that has many
desirable properties, such as controllability, modularity, and uni-
fied handling of diverse transformations. The core idea of our ap-
proach is to leverage high-dimensional embeddings for geometry
and materials—these are learned directly from data—and to trans-
form them using matrices that are encoded from artist-friendly
parameters by a set of neural encoders. Despite the content of the
vectors not having any specific interpretation (e.g. voxels or distance
fields), the transformations are still general and produce the same
effect irrespective of the object they modify.
We demonstrate that learned representations can be organized

into scene graphs that facilitate direct control over the placement of
individual objects and the overall scene composition. The streaming
renderer can handle an order of magnitude more scene elements
than it was trained on, and produces temporally stable animations.
We hope our work will stimulate further developments to turn
neural rendering into a universally applicable tool.

ACKNOWLEDGMENTS
We thank Jacob Munkberg, Jon Hasselgren and Marco Salvi for
insightful discussions and feedback. We used the following models:
the Utah teapot by Martin Newell, the Suzanne model (Blender
monkey) by Willem-Paul van Overbruggen, and the Stanford bunny.

REFERENCES
Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor Lempit-

sky. 2020. Neural Point-Based Graphics. In Computer Vision – ECCV 2020, Andrea
Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer Inter-
national Publishing, Cham, 696–712.

Oron Ashual and Lior Wolf. 2019. Specifying Object Attributes and Relations in
Interactive Scene Generation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV).

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009. Curricu-
lum Learning. In Proceedings of the 26th Annual International Conference on Machine
Learning (ICML ’09). Association for Computing Machinery, New York, NY, USA,
41–48. https://doi.org/10.1145/1553374.1553380

Brent Burley. 2012. Physically based shading at Disney. In ACM SIGGRAPH Courses:
Practical Physically-Based Shading in Film and Game Production. ACM, New York,
NY, USA, 18:35–18:48. https://doi.org/10.1145/2343483.2343493

Xuelin Chen, Daniel Cohen-Or, Baoquan Chen, and Niloy J. Mitra. 2021. Towards a
Neural Graphics Pipeline for Controllable Image Generation. Computer Graphics
Forum 40, 2 (2021).

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
2016. InfoGAN: Interpretable Representation Learning by Information Maximizing
Generative Adversarial Nets. In Advances in Neural Information Processing Systems
29. Curran Associates, Inc., 2172–2180.

Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks. Mach. Learn. 20,
3 (Sept. 1995), 273–297. https://doi.org/10.1023/A:1022627411411

Sebastien Ehrhardt, Oliver Groth, Aron Monszpart, Martin Engelcke, Ingmar Posner,
Niloy Mitra, and Andrea Vedaldi. 2020. RELATE: Physically Plausible Multi-Object
Scene Synthesis Using Structured Latent Spaces. In Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin
(Eds.), Vol. 33. Curran Associates, Inc., 11202–11213. https://proceedings.neurips.
cc/paper/2020/file/806beafe154032a5b818e97b4420ad98-Paper.pdf

S. M. Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S. Morcos,
Marta Garnelo, Avraham Ruderman, Andrei A. Rusu, Ivo Danihelka, Karol Gregor,
David P. Reichert, Lars Buesing, Theophane Weber, Oriol Vinyals, Dan Rosenbaum,
Neil Rabinowitz, Helen King, Chloe Hillier, Matt Botvinick, Daan Wierstra, Koray
Kavukcuoglu, and Demis Hassabis. 2018. Neural Scene Representation and Render-
ing. Science 360, 6394 (2018), 1204–1210. https://doi.org/10.1126/science.aar6170

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adver-
sarial Nets. In Advances in Neural Information Processing Systems, Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger (Eds.),
Vol. 27. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Jonathan Granskog, Fabrice Rousselle, Marios Papas, and Jan Novák. 2020. Composi-
tional Neural Scene Representations for Shading Inference. ACM Transactions on
Graphics (Proceedings of SIGGRAPH) 39, 4 (July 2020).

Michelle Guo, Alireza Fathi, Jiajun Wu, and Thomas Funkhouser. 2020. Object-Centric
Neural Scene Rendering. arXiv preprint arXiv:2012.08503 (2020).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In
Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV)
(ICCV ’15). IEEE Computer Society, USA, 1026–1034. https://doi.org/10.1109/ICCV.
2015.123

Pedro Hermosilla, Sebastian Maisch, Tobias Ritschel, and Timo Ropinski. 2019. Deep-
learning the Latent Space of Light Transport. Computer Graphics Forum 38, 4 (2019),
207–217. https://doi.org/10.1111/cgf.13783

Roei Herzig, Amir Bar, Huijuan Xu, Gal Chechik, Trevor Darrell, and Amir Globerson.
2020. Learning Canonical Representations for Scene Graph to Image Generation. In
European Conference on Computer Vision.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural
Computation 9, 8 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
arXiv:https://doi.org/10.1162/neco.1997.9.8.1735

Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. 2020. GANSpace:
Discovering Interpretable GAN Controls. In Proc. NeurIPS.

Maor Ivgi, Yaniv Benny, Avichai Ben-David, Jonathan Berant, and Lior Wolf. 2020.
Scene Graph to Image Generation with Contextualized Object Layout Refinement.
arXiv:cs.CV/2009.10939

Justin Johnson, Agrim Gupta, and Li Fei-Fei. 2018. Image Generation from Scene Graphs.
In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1219–1228.
https://doi.org/10.1109/CVPR.2018.00133

Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-Based Generator Architecture
for Generative Adversarial Networks. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 4396–4405. https://doi.org/10.1109/CVPR.
2019.00453

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo
Aila. 2020. Analyzing and Improving the Image Quality of StyleGAN. In Proc. CVPR.

ACM Trans. Graph., Vol. 40, No. 4, Article 164. Publication date: August 2021.

https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/2343483.2343493
https://doi.org/10.1023/A:1022627411411
https://proceedings.neurips.cc/paper/2020/file/806beafe154032a5b818e97b4420ad98-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/806beafe154032a5b818e97b4420ad98-Paper.pdf
https://doi.org/10.1126/science.aar6170
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1111/cgf.13783
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/cs.CV/2009.10939
https://doi.org/10.1109/CVPR.2018.00133
https://doi.org/10.1109/CVPR.2019.00453
https://doi.org/10.1109/CVPR.2019.00453

Neural Scene Graph Rendering • 164:11

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann
LeCun (Eds.). http://arxiv.org/abs/1412.6980

Tejas D Kulkarni, William F. Whitney, Pushmeet Kohli, and Josh Tenenbaum. 2015.
Deep Convolutional Inverse Graphics Network. In Advances in Neural Information
Processing Systems 28. Curran Associates, Inc., 2539–2547.

Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. 2020. Neural Scene Flow
Fields for Space-Time View Synthesis of Dynamic Scenes. ArXiv abs/2011.13084
(2020).

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020.
Neural Sparse Voxel Fields. NeurIPS (2020).

Yunchao Liu, Jiajun Wu, Zheng Wu, Daniel Ritchie, William T. Freeman, and Joshua B.
Tenenbaum. 2019. Learning to Describe Scenes with Programs. In International Con-
ference on Learning Representations. https://openreview.net/forum?id=SyNPk2R9K7

Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann,
and Yaser Sheikh. 2019. Neural Volumes: Learning Dynamic Renderable Volumes
from Images. ACM Trans. Graph. 38, 4, Article Article 65 (July 2019), 14 pages.
https://doi.org/10.1145/3306346.3323020

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas
Geiger. 2019. Occupancy Networks: Learning 3D Reconstruction in Function Space.
In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis. In ECCV.

Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang Yang.
2019. HoloGAN: Unsupervised Learning of 3D Representations FromNatural Images.
In The IEEE International Conference on Computer Vision (ICCV).

Thu Nguyen-Phuoc, Christian Richardt, Long Mai, Yong-Liang Yang, and Niloy Mitra.
2020. BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled
Images. In Advances in Neural Information Processing Systems 33.

Thu H Nguyen-Phuoc, Chuan Li, Stephen Balaban, and Yongliang Yang. 2018. Render-
Net: A Deep Convolutional Network for Differentiable Rendering from 3D Shapes.
In Advances in Neural Information Processing Systems 31. Curran Associates, Inc.,
7891–7901.

Weili Nie, Tero Karras, Animesh Garg, Shoubhik Debhath, Anjul Patney, Ankit B. Patel,
and Anima Anandkumar. 2020. Semi-Supervised StyleGAN for Disentanglement
Learning. arXiv:cs.CV/2003.03461

Michael Niemeyer and Andreas Geiger. 2021. GIRAFFE: Representing Scenes as Com-
positional Generative Neural Feature Fields. In Conference on Computer Vision and
Pattern Recognition (CVPR).

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. 2020. Differ-
entiable Volumetric Rendering: Learning Implicit 3D Representations without 3D
Supervision. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and Andreas Geiger.
2019. Texture Fields: Learning Texture Representations in Function Space. In Inter-
national Conference on Computer Vision.

Michael Oechsle, Michael Niemeyer, Christian Reiser, Lars Mescheder, Thilo Strauss,
and Andreas Geiger. 2020. Learning Implicit Surface Light Fields. In International
Conference on 3D Vision (3DV).

Kyle Olszewski, Sergey Tulyakov, Oliver Woodford, Hao Li, and Linjie Luo. 2019.
Transformable Bottleneck Networks. The IEEE International Conference on Computer
Vision (ICCV) (Nov 2019).

Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. 2020. Neural
Scene Graphs for Dynamic Scenes.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman,
Steven M. Seitz, and Ricardo Martin-Brualla. 2020. Deformable Neural Radiance
Fields. arXiv preprint arXiv:2011.12948 (2020).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates,
Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. 2020.
D-NeRF: Neural Radiance Fields for Dynamic Scenes. arXiv preprint arXiv:2011.13961
(2020).

Konstantinos Rematas and Vittorio Ferrari. 2020. Neural Voxel Renderer: Learning an
Accurate and Controllable Rendering Tool. In CVPR.

Paul Sanzenbacher, Lars Mescheder, and Andreas Geiger. 2020. Learning Neural Light
Transport. arXiv:cs.CV/2006.03427

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks
for Large-Scale Image Recognition. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1409.1556

Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. 2019. Scene Represen-
tation Networks: Continuous 3D-Structure-Aware Neural Scene Representations.
In Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
1119–1130.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin
Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng.
2020. Fourier Features Let Networks Learn High Frequency Functions in Low
Dimensional Domains. NeurIPS (2020).

Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. 2016. Multi-view 3D
Models from Single Images with a Convolutional Network. In Computer Vision –
ECCV 2016. Springer International Publishing, Cham, 322–337.

Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann, Stephen Lombardi, Kalyan
Sunkavalli, Ricardo Martin-Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,
Rohit Pandey, Sean Fanello, Gordon Wetzstein, Jun-Yan Zhu, Christian Theobalt,
Maneesh Agrawala, Eli Shechtman, Dan B Goldman, and Michael Zollhöfer. 2020.
State of the Art on Neural Rendering. Computer Graphics Forum 39, 2 (2020), 701–727.
https://doi.org/10.1111/cgf.14022

Justus Thies, Michael Zollhöfer, andMatthias Nießner. 2019. Deferred Neural Rendering:
Image Synthesis Using Neural Textures. ACM Trans. Graph. 38, 4, Article Article 66
(July 2019), 12 pages. https://doi.org/10.1145/3306346.3323035

Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil Kim. 2020. Space-time Neural
Irradiance Fields for Free-Viewpoint Video. arXiv preprint arXiv:2011.12950 (2020).

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

ACM Trans. Graph., Vol. 40, No. 4, Article 164. Publication date: August 2021.

http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SyNPk2R9K7
https://doi.org/10.1145/3306346.3323020
http://arxiv.org/abs/cs.CV/2003.03461
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/cs.CV/2006.03427
http://arxiv.org/abs/1409.1556
https://doi.org/10.1111/cgf.14022
https://doi.org/10.1145/3306346.3323035

	Abstract
	1 Introduction
	2 Related Work
	3 Classical Scene Graphs
	4 Neural Scene Graph
	4.1 Outer nodes
	4.2 Inner nodes
	4.3 End-to-end training
	4.4 Discussion

	5 Streaming Neural Renderer
	5.1 Architecture

	6 Optimization
	7 Results
	7.1 Orthogonality
	7.2 2D animations
	7.3 3D experiments

	8 Discussion and Future Work
	8.1 Discussion
	8.2 Future Work

	9 Conclusion
	Acknowledgments
	References

