Images

Use mouse wheel to zoom in/out, click and drag to pan. Press keys [1], [2], ... to switch between individual images.
16 spp
64 spp
256 spp
1024 spp
Color buffers
Structural Dissimilarity
rMSE Heatmap
1: Input
2: NLM
3: NLM-MS
4: RHF
5: RDFC
6: LBF
7: WLR
8: WLR-PF
9: NFOR (ours)
0: Reference
InputNLMNLM-MSRHFRDFCLBFWLRWLR-PFNFOR (ours)Reference
1: Input
2: NLM
3: NLM-MS
4: RHF
5: RDFC
6: LBF
7: WLR
8: WLR-PF
9: NFOR (ours)
InputNLMNLM-MSRHFRDFCLBFWLRWLR-PFNFOR (ours)
1: Input
2: NLM
3: NLM-MS
4: RHF
5: RDFC
6: LBF
7: WLR
8: WLR-PF
9: NFOR (ours)
InputNLMNLM-MSRHFRDFCLBFWLRWLR-PFNFOR (ours)
Color buffers
Structural Dissimilarity
rMSE Heatmap
1: Input
2: NLM
3: NLM-MS
4: RHF
5: RDFC
6: LBF
7: WLR
8: WLR-PF
9: NFOR (ours)
0: Reference
InputNLMNLM-MSRHFRDFCLBFWLRWLR-PFNFOR (ours)Reference
1: Input
2: NLM
3: NLM-MS
4: RHF
5: RDFC
6: LBF
7: WLR
8: WLR-PF
9: NFOR (ours)
InputNLMNLM-MSRHFRDFCLBFWLRWLR-PFNFOR (ours)
1: Input
2: NLM
3: NLM-MS
4: RHF
5: RDFC
6: LBF
7: WLR
8: WLR-PF
9: NFOR (ours)
InputNLMNLM-MSRHFRDFCLBFWLRWLR-PFNFOR (ours)
Color buffers
Structural Dissimilarity
rMSE Heatmap
1: Input
2: NLM
3: NLM-MS
4: RHF
5: RDFC
6: LBF
7: WLR
8: WLR-PF
9: NFOR (ours)
0: Reference
InputNLMNLM-MSRHFRDFCLBFWLRWLR-PFNFOR (ours)Reference
1: Input
2: NLM
3: NLM-MS
4: RHF
5: RDFC
6: LBF
7: WLR
8: WLR-PF
9: NFOR (ours)
InputNLMNLM-MSRHFRDFCLBFWLRWLR-PFNFOR (ours)
1: Input
2: NLM
3: NLM-MS
4: RHF
5: RDFC
6: LBF
7: WLR
8: WLR-PF
9: NFOR (ours)
InputNLMNLM-MSRHFRDFCLBFWLRWLR-PFNFOR (ours)
Color buffers
Structural Dissimilarity
rMSE Heatmap
1: Input
2: NLM
3: NLM-MS
4: RHF
5: RDFC
6: LBF
7: WLR
8: WLR-PF
9: NFOR (ours)
0: Reference
InputNLMNLM-MSRHFRDFCLBFWLRWLR-PFNFOR (ours)Reference
1: Input
2: NLM
3: NLM-MS
4: RHF
5: RDFC
6: LBF
7: WLR
8: WLR-PF
9: NFOR (ours)
InputNLMNLM-MSRHFRDFCLBFWLRWLR-PFNFOR (ours)
1: Input
2: NLM
3: NLM-MS
4: RHF
5: RDFC
6: LBF
7: WLR
8: WLR-PF
9: NFOR (ours)
InputNLMNLM-MSRHFRDFCLBFWLRWLR-PFNFOR (ours)

Charts

Relative improvement, obtained by dividing the filtered error by the input error. For each method, we show, from left to right, the improvement at 16, 64, 256 and 1024 samples. For MSE and relative MSE, lower values are better; for PSNR and SSIM, higher values are better.
MSE
rMSE
PSNR
SSIM

Error Metrics

MSE
SPPInputNLMNLM-MSRHFRDFCLBFWLRWLR-PFNFOR (ours)
16 spp0.89290.10120.085920.11030.087010.14150.29480.27400.1602
64 spp0.22770.034800.030990.036550.030910.063860.067410.049970.04070
256 spp0.056360.010600.0098760.017350.0093950.021100.0098330.0091320.009602
1024 spp0.014160.0026640.0026260.013560.0028190.0096190.0034790.0025550.002486
rMSE
SPPInputNLMNLM-MSRHFRDFCLBFWLRWLR-PFNFOR (ours)
16 spp2.8870.062870.054240.17330.037100.058410.13050.10810.07159
64 spp0.72690.021410.021580.055400.012480.034690.030950.018480.01063
256 spp0.18170.0064640.0068550.013320.0041850.010260.0053810.0050330.003044
1024 spp0.045640.0022200.0022250.0037110.0016020.0030740.0026040.0018530.001208
PSNR
SPPInputNLMNLM-MSRHFRDFCLBFWLRWLR-PFNFOR (ours)
16 spp8.35524.7626.6422.3326.9727.5919.9520.2422.44
64 spp13.3928.6529.8625.9631.6529.8927.4028.8631.55
256 spp19.4533.4734.0430.8835.7032.9134.4434.5536.77
1024 spp25.2937.9438.0735.8639.5136.8738.0938.9140.77
SSIM
SPPInputNLMNLM-MSRHFRDFCLBFWLRWLR-PFNFOR (ours)
16 spp0.047690.69170.73940.80450.85310.89800.72020.74890.8915
64 spp0.096950.80660.83130.86230.92450.92170.83230.88040.9493
256 spp0.23270.90850.91760.91620.95950.94450.95040.95100.9735
1024 spp0.46500.95970.96210.95730.97750.96600.96610.97550.9840