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... follows the structure of the STAR
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2 Many-Light Rendering Concepts (Jan)
2> Basic Idea
2 Improved Virtual Lights Generation
» Lighting with Virtual Lights
2 Really Many Lights: Scalability (Carsten)
2 Interactive and Real-Time Rendering (Carsten)
= Conclusions, Outlook, Q&A (Jan & Carsten)

the slides of this part are based on Bruce Walter‘s and Milos Hasan’s presentations
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Scalable Solutions for (Really) Many Lights
VPL usage is more expensive than generation

Lightcuts

> illumination at a single receiver: Lightcuts
“Lightcuts: a Scalable Approach to lllumination” by Walter,
Fernandez, Arbree, Bala, Donikian, Greenberg, SIGGRAPH 2005

- illumination over a pixel: Multidimensional Lightcuts
“Multidimensional Lightcuts” by Walter, Arbree, Bala,
Greenberg, SIGGRAPH 2006

Matrix Row-Column Sampling
»,Matrix row-column sampling for the many-light problem® by

Hasan, Pellacini, Bala, SIGGRAPH 2007

important: these methods use virtual POINT lights only

cUrograonics 2013
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Why Many Lights?

»» simulate complex illumination using point lights
= area lights

S

> HDR environment maps
sun and sky light

\%

indirect illumination

v

more lights = more accurate

Vv

» ... and more expensive
> naive cost: linear in lights

- “v4 N

» goal: sub-linear cost per light T RIN
area lights + sun/sky + indirect
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Setting / Problem
many lights, a surface point to be lit

visible point

e
7
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Setting / Problem
» many lights, a surface point to be lit
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Setting / Problem
» many lights, a surface point to be lit

camera
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Key Concepts
light cluster
light tree

a cut: set of nodes that
partitions the lights into clusters
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Key Concepts
& light cluster
» light tree

# a cut: set of nodes that
partitions the lights into clusters

clusters

individual
lights
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“~ with Many-Light Methods

Key Concepts
& light cluster
e light tree

»» a cut: set of nodes that
partitions the lights into clusters
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~ with Many-Light Methods

Simple Example
» 4 individual lights, 3 clusters

light tree

representative

lights clusters

]_ individual
lights
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Simple Example
» 4 individual lights, 3 clusters

3 different cuts
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Simple Example
» 4 individual lights, 3 clusters

3 different cuts
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Simple Example
» 4 individual lights, 3 clusters

3 different cuts

Bad Good Bad
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with Many-Light Methods

Simple Example
» 4 individual lights, 3 clusters

3 different cuts

Good Good Good
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Algorithm Overview
pre-process
= convert illumination to point lights
= build light tree

for each visible point
- choose a cut to approximate the local illumination
> bound maximum error of cluster approximation
- refine cluster if error bound is too large
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Perceptual Metric
Weber’s Law
= contrast visibility threshold is fixed percentage of signal
= used 2% in Lightcuts

ensure each cluster’s error < visibility threshold
> transitions will not be visible
= used to select cut
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Cut-Selection Algorithm
»» start with coarse cut (root-node)

cut
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Cut-Selection Algorithm
»» select cluster with largest error-bound

V 4

cut
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Cut-Selection Algorithm
> refine if error bound > 2% of total

»» see [Walter et al. 2005] how to compute cluster estimate and error bound
(remember: this also includes BRDFs)

PN

cut
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Cut-Selection Algorithm
»» (again) select cluster with largest error-bound

TN K

cut




Lightcuts ) e IT

with Many-Light Methods

Cut-Selection Algorithm
... and refine if its error bound is above threshold ...

cut
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Cut-Selection Algorithm
» ..andsoon ..

cut
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Cut-Selection Algorithm
» ... repeat until the entire cut obeys 2% threshold

cut
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with Many-Light Methods

Tableau, 630K polygons, 13 000 lights, (env map + indirect)



Lightcuts

Summary
unified illumination handling
scalable solution for many lights
> |ocally adaptive representation (the cut)
analytic cluster error bounds
- most important lights always sampled
perceptual visibility metric

... anything else?
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with Many-Light Methods

A pixel is more than a point...
» motion blur

Pixel = J j j L(x, w) ...

Time Pixel Lights
Area
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A pixel is more than a point...
> motion blur
» participating media

pei= [ [ [ [ e

Volume Time Pixel Lights
Area
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A pixel is more than a point...

> motion blur

» participating media
»» depth of field

pei= [ [ [ [ [ iwo.

Aperture Volume Time Pixel Lights
Area



Multidimensional Lightcuts

Concept
discretize full integral into 2 point sets
> light points (L)
= gather points (G)

ﬁ/ EUrograpnic "";/U 3
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: } light points

\ } gather points



Multidimensional Lightcuts

Concept
discretize full integral into 2 point sets
= light points (L)
= gather points (G)

; } light points
} gather points

A3 | EUrOgraPNICS 2013
"y Scalable Realistic Rendering
with Many-Light Methods
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Concept
cluster light and gather points into 2 trees

gather tree
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Concept

product graph: hierarchy over the set of all gather-light pairs
(never stored explicitly)

product graph
GO light tree
G2 — X
G1

L3

gather tree
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Concept

product graph: hierarchy over the set of all gather-light pairs
(never stored explicitly)

product graph 5 : L3

GO

G1
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Concept

product graph: hierarchy over the set of all gather-light pairs
(never stored explicitly)

product graph A ~ L3

GO

G1
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Concept

product graph: hierarchy over the set of all gather-light pairs
(never stored explicitly)

product graph L0 a 3 3
G2
31

L3 GO



Multidimensional Lightcuts

Algorithm Overview
once per image
= create lights and light tree

for each pixel
- create gather points and gather tree for pixel

> adaptively refine clusters in product graph until
all cluster errors < perceptual metric
(please see the paper for details)
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with Many-Light Methods

Results

Direct only (relative cost 1x) Direct+Indirect (1.3x)

g

Direct+Indirect+Volume (1.8x) Direct+Indirect+Volume+Motion (2.2x)
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Bidirectional Lightcuts

» handles more effects including glossy reflections, subsurface,
short-range indirect illumination

» bidirectional formulation and a set of weighting strategies to reduce the
bias in VPL-based rendering

21049(

volumetric

191)e

Bidirectional Lightcuts, Walter et al., SIGGRAPH 2012
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Alternatives to Lightcuts
Matrix Row-Column Sampling [Hasan et al. 2007]
Visibility Clustering

potential advantages
- shadow mapping instead of ray tracing
= simpler to implement
> no bounds on BRDFs required
= faster in occluded environments
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Matrix Interpretation

lights (100,000)

pixels
(2,000,000)
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Problem Statement
= pixel colors: compute sum of columns

» we’re not given a matrix, we can only |ight5
evaluate A(i,j) on demand ,
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Problem Statement
... such matrices are highly structured

643 lights

LB LN TR R,

DN S e L

R TRLA S TR LR

U TR Y A

O P T L A T s
i " }»'f'\ SR S W IR N

174 N

14
141
{

900 pixels

A simple scene

30 x 30 image

The matrix
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Low Rank Assumption Violation
bad case: lights with very local contribution



Matrix Row-Column Sampling

Matrix Interpretation
sample a subset of matrix elements
sampling patterns do matter
= point-to-point visibility: raytracing
= point-to-many-points visibility: shadow mapping

lights

°
ooooooooooooooooooooooooooooooooooooooooo

pixels

00000000000000000000000000000000000000000
L] L]

2Urograpnics 2013

ny-Light Methods - SYCKT
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Matrix Row-Column Sampling =5 ScalableRealtic Rendering @I

with Many-Light Methods

Row-Column Shadow Duality

columns: regular shadow mapping

rows: also shadow mapping pixels

surface

samples 1

................. -<l§<j{> = ‘
V\ y .................... A

shadow map at shadow map at
light position sample position
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with Many-Light Methods

Exploration and Exploitation

p———— — —

L

— —— e

compute rows how to choose compute columns weighted

(explore) columns and (exploit) sum
weights?
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Reduced Matrix

reduced

\ CO|Umns
f—] -
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with Many-Light Methods

Clustering Approach

reduced hoose
choose k clusters representative

columns
columns



Matrix Row-Column Sampling

Algorithm Overview

]

compute rows (GPU)

il

choose representatives

-

assemble rows into
reduced matrix

=

compute columns (GPU)

:ﬁ) Euvrographics 2013

o Scalable Realistic Rendering
with Many-Light Methods Q("

-

=

cluster reduced
columns

weighted sum
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Results: Temple

» 2.1m polygons 5x diff

» mostly indirect and sky illumination

» indirect shadows

MRCS: 16.9 sec Reference: 20 min
(300 rows + 900 columns) (using all 100k lights)
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Results: Trees and Bunny
» complex incoherent geometry
» low rank, not low frequency

MRCS: 2.9 sec MRCS: 3.8 sec

(100 rows + 200 columns) (100 rows + 200 columns)
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nith IV

Tensor Clustering for Animated Scenes
sequence of matrices (one per frame) can be seen as one large tensor

lights lights

pixels

pixels

sequence of matrices tensor view
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Tensor Clustering for Animated Scenes
no details here!

Sample Reduced Cluster Compute Reconstruct
slices tensor reduced representatives full tensor
columns
o lights
rb@ °® °®
S\& / o / [ J
%)
Q
X
Q_ [ ]
/ /
7 /.

Rectangular clustering



Scalable Many-Lights Rendering

More Clustering Strategies

> LightSlice [Ou and Pellacini 2011]
= compute initial clustering
> refine it differently in different “slices”
= use neighboring slices to get more rows

> Visibility Clustering [Davidovic et al. 2010]
(already in Jan’s part)

» separate shading from visibility
= for global lights:

= cluster visibility

> shade from more VPLs

| EJ UUf_J,JflJ,_; 2018
en® calable Realis
tI Ma R\,fL EtIVi t

< AIT
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More Clustering Strategies

Clustered Visibility [Dong et al. 2009]
> cluster VPLs

» use soft shadow mapping
> shade from all VPLs

RSM Clustering [Prutkin et al. 2012]
> bidirectional importance

» temporally stable clustering
= compute virtual disc lights
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... follows the structure of the STAR
2 Introduction & Welcome (Carsten)
2 Many-Light Rendering Concepts (Jan)
2> Basic Idea
2 Improved Virtual Lights Generation
» Lighting with Virtual Lights
2 Really Many Lights: Scalability (Carsten)
2 Interactive and Real-Time Rendering (Carsten)
= Conclusions, Outlook, Q&A (Jan & Carsten)
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Real-time Many-light Rendering e Yy
Outline
» main difference to offline-methods is visibility computation

» rasterization instead of raycasting

» VPL generation

> lighting and shadowing from VPLs




-+i _li : =3 ) Zurograpnics 2013
Real-time Many-light Rendering 22 e SO

~—

Visibility Computation for VPL Generation

» real-time rendering & mostly diffuse scenes < relatively few VPLs (~103)
» if acceleration structure available use ray casting

» VPL generation with rasterization
> render scene from light

= observation: visible surfaces = first intersection of light path
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VPL Generation with Rasterization

render scene from light into reflective shadow map [DSO05]:
all information available for creating VPLs and continuing paths

> single bounce indirect illumination by directly sampling the RSM
= importance sampling can easily be added [DSO6][REH*11]
»» proceed recursively by rendering another RSM

b

-

reflective shadow map

‘J " ... .l.."..
15% 5% B ﬁu _.' . .' L

[

=fe= <

75%  25%

normal
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Lighting and Shadowing
many lights can be handled with deferred shading
interleaved sampling (problem: detailed normals/geometry) [Seg06]
hierarchical shading [NW10]
accumulate and filter incident light [SW09]
clustered deferred and forward shading [OBA12]

\

\Y /

W

\"'.

bottleneck: shadow computation
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Shadow Computation
» ...is the real bottleneck with instant radiosity / many lights methods
» exploit temporal coherency [LSKLAQO7]
» sampled visibility
» voxelization, e.g. [SS10]
> faster shadow maps
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Problem Setting

» need many shadow maps of low/moderate resolution
» rendering the scene many times (transformation, ...) is costly
= what we need is level-of-detail rendering
= point representations are well-suited for fast, approximate renderings

> two approaches: simple LOD with no connectivity and
water-tight rendering with point hierarchy
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Imperfect Shadow Maps
»» create random sets of point samples (triangle ID + barycentric coords)
» 4k to 16k points per “shadow map” (global parameter)
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with Many-Light Methods
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Imperfect Shadow Maps
» 4k to 16k points per “shadow map” (global parameter)
»» heuristic to reconstruct the surfaces from point samples

. w " l‘? - gy 11

ook

Al ;15 e =% .1.‘ 1
-l N .-.- - » :. 'l

without pull-push with pull-push triangle rasterization
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Imperfect Shadow Maps

comparison of shadow maps for a single point light

triangle rasterization without pull-push with pull-push
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Imperfect Shadow Maps
» pull-push in image-space: parallel for thousands of shadow maps

RQQQ*Q@Q H PPy
Hl-ir L4 i.,+ L‘r 1_*_1..* i.* r
€ ARG RAARY

without pull-push with pull-push
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Imperfect Shadow Maps

& ... can render thousands of shadow maps in 100ms
» ... work because errors average out

.. require playing with parameters

v
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High-Quality Point-based Rendering

»» create random points on surfaces and create hierarchy

»» idea of Qsplat: traverse hierarchy until projected size of point primitive is
small enough

image size >1 pixel

traverse children
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High-Quality Point-based Rendering
»» create random points on surfaces and create hierarchy

» idea of Qsplat: traverse hierarchy until projected size of point primitive is
small enough

.
.
K

image size >1 pixel

traverse children
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High-Quality Point-based Rendering
»» create random points on surfaces and create hierarchy

»» idea of Qsplat: traverse hierarchy until projected size of point primitive is
small enough

image size <1 pixel

render point primitive
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Micro-Rendering

» renders accurate environment maps / depth buffers from point hierarchy
» actually developed for final gathering, using CUDA/OpenCL

»» can be used to create (R)SMs (in 2009: ~16k in 100 ms, each 242 pixels)

Point samples used

Micro-framebuffer




Shadow Mapping for VPLs

ManyLODs [Hollander, PhD Thesis]
fine-grained LOD selection for many views based on BVH
incremental and lazy update schemes to many-view problem
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Light Transport in Participating Media

= direct light from surface VPLs and

» single-scattering from media VPLs (emit according to phase function)
»» VPLs also generated at scattering events in media (Jan’ part)
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Visibility and Transmittance
» homogeneous media:
= standard shadow map per VPL (compute transmittance)

» heterogeneous media:
= shadow map plus ray marching c

> deep shadow maps
> adaptive volumetri

depth
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with Many-Light Methods

Conclusions
» many-lights methods work quite well in real-time
> bias compensation is feasible for surfaces and media
> glossiness for surfaces < anisotropic phase functions for media
= for mostly diffuse scenes, for scenes with moderate anisotropic media

isotropic moderate anisotropic strong anisotropic





