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  Methods
Two	
  major	
  passes

Many-light methods consist of two passes: generation of VPLs and lighting with VPLs.
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Generation of VPLs starts by sampling a position on the light source and a direction for 
shooting a photon.
The photon will travel along this ray until it hits the nearest surface, or as in this case scatters 
in the medium.

Then we sample the phase function and keep tracing the photon creating a random walk 
through the scene until we decide to stop and create a Virtual Point Light source. As a matter 
of optimization it is common to create a VPL at each bounce of the path. We often construct 
several such random walks to generate many Virtual Point Lights.
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Then in the second pass, we use these VPLs to illuminate points seen by the camera...
both in the media and on surfaces .
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So, we have these two passes:

the generation of VPLs and lighting with VPLs and I will now mention the difficulties that may 
arise in each of them starting with the generation first. 
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The first problem of a naive generation, such as the one that I outlined at the beginning, 
arises in complex scenes, where light needs to bounce several times to reach the camera. 

Here we have a schematic example of such scene and you can see that most of the naively 
distributed VPLs will not contribute any illumination to the points seen by the camera.

Perhaps only these three.

As a result we end up with a rendering that does not look plausible and may be far from the 
reference. 
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Another problem is that we may not have enough of VPLs in certain areas. 
This happens especially in glossy scenes. 

On your left you can see some artifacts, the little splotches, which emphasize the presence of 
the VPLs. 

The common trick is to consider only the diffuse illumination and further clamp the 
contribution, but this significantly changes the appearance of the scene. 

The reason why these artifacts are emphasized in glossy scenes is that the energy of VPLs is 
concentrated into narrow cones of directions, and therefore we need many VPLs to capture 
these reflections accurately.
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So our goal is to generate VPLs only where they really need to be for the camera. There are 
several approaches that were proposed to achieve this.

The most straightforward one is to simply reject VPLs that are not likely to contribute, other 
techniques use bidirectional and metropolis sampling to create VPLs. The last one focuses on 
highly glossy scenes creating local virtual lights to compensate for the energy loss due to 
clamping.
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The first technique is a form of rejection sampling and was presented in a short paper by 
Georgiev and Slusallek at Eurographics 2010. 

The idea is very simple, they use the naive generation algorithm but probabilistically reject 
VPLs whose contribution is expected to be less than on average. 

This way they end up keeping only few VPLs that will contribute almost equally.
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The algorithm works as follows: 

First they estimate the average contribution of a VPL Phi_v. For this they shoot a few pilot 
VPLs and compute the average contribution to few surface points seen by the camera. 

Then when generating the VPLs, they take each created one, estimate its contribution, again 
by computing the illumination of few surface points seen by the camera. 

The VPL is kept with probability that is proportional to its relative contribution with respect to 
the average. 
To account for the rejected VPLs, they simply divide by the acceptance probability 

The last two steps are basically Russian roulette driven by the expected contribution to the 
image.
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The algorithm works as follows: 

First they estimate the average contribution of a VPL Phi_v. For this they shoot a few pilot 
VPLs and compute the average contribution to few surface points seen by the camera. 

Then when generating the VPLs, they take each created one, estimate its contribution, again 
by computing the illumination of few surface points seen by the camera. 

The VPL is kept with probability that is proportional to its relative contribution with respect to 
the average. 
To account for the rejected VPLs, they simply divide by the acceptance probability 

The last two steps are basically Russian roulette driven by the expected contribution to the 
image.
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The algorithm works as follows: 

First they estimate the average contribution of a VPL Phi_v. For this they shoot a few pilot 
VPLs and compute the average contribution to few surface points seen by the camera. 

Then when generating the VPLs, they take each created one, estimate its contribution, again 
by computing the illumination of few surface points seen by the camera. 

The VPL is kept with probability that is proportional to its relative contribution with respect to 
the average. 
To account for the rejected VPLs, they simply divide by the acceptance probability 

The last two steps are basically Russian roulette driven by the expected contribution to the 
image.
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First they estimate the average contribution of a VPL Phi_v. For this they shoot a few pilot 
VPLs and compute the average contribution to few surface points seen by the camera. 

Then when generating the VPLs, they take each created one, estimate its contribution, again 
by computing the illumination of few surface points seen by the camera. 

The VPL is kept with probability that is proportional to its relative contribution with respect to 
the average. 
To account for the rejected VPLs, they simply divide by the acceptance probability 
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The algorithm works as follows: 

First they estimate the average contribution of a VPL Phi_v. For this they shoot a few pilot 
VPLs and compute the average contribution to few surface points seen by the camera. 

Then when generating the VPLs, they take each created one, estimate its contribution, again 
by computing the illumination of few surface points seen by the camera. 

The VPL is kept with probability that is proportional to its relative contribution with respect to 
the average. 
To account for the rejected VPLs, they simply divide by the acceptance probability 

The last two steps are basically Russian roulette driven by the expected contribution to the 
image.
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The advantages of rejection sampling are the simplicity and that the VPLs have roughly equal 
contribution. 

The drawbacks are the increased cost of the VPL distribution pass.

and also the one-pixel image assumption, which means that we do not create different VPLs 
for different pixels
and thus this technique does not help much with the problem of glossy inter-reflections. 
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Without	
  rejec=on With	
  rejec=on	
  (7%	
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Images	
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  and	
  Slusallek

Here we have some example results that use the same number of VPLs to illuminate the 
scene. You can see that the rejection technique reduces the structured artifacts. 
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A more advanced technique builds on bidirectional sampling of light transport.

It was presented at the rendering workshop 2006 by Segovia and colleagues, 

and the idea is to use bidirectional path tracing to construct a path and then place a VPL at 
the 2nd vertex from the camera. 

This VPL will illuminate many points seen by the camera and thus the possibly expensive 
construction of the path is well amortized.  
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A more advanced technique builds on bidirectional sampling of light transport.
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The same authors then extended the technique to generate more VPLs around the second 
vertex using Metropolis-Hastings sampling. 

They mutate the paths to create VPLs that have an equal contribution to the image. 
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The same authors then extended the technique to generate more VPLs around the second 
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The same authors then extended the technique to generate more VPLs around the second 
vertex using Metropolis-Hastings sampling. 

They mutate the paths to create VPLs that have an equal contribution to the image. 
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comparison	
  with	
  equal	
  number	
  of	
  VPLs	
  (1024)

Here we see a comparison of instant radiosity with naive generation of VPLs,

Bidirectional Instant radiosity (in the middle) and metropolis instant radiosity (on the right).

All of the images were computed using 1024 VPLs. 
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Here we see a comparison of instant radiosity with naive generation of VPLs,

Bidirectional Instant radiosity (in the middle) and metropolis instant radiosity (on the right).

All of the images were computed using 1024 VPLs. 
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The main advantage of Metropolis instant radiosity is the robustness, allowing to handle very 
complex scenes. 

Once the algorithm discovers a path that contributes to the image, it amortizes its 
construction by creating several VPLs with equal contribution, which is the main advantage 
over the Bidirectional instant radiosity. 

The main drawback is the more involved implementation. Also, it does not help much with 
the problem if glossy inter-reflections.
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The last technique that we will briefly mention tries to address this problem of glossy inter-
reflection. 

And it does so by creating a set of global VPLs from the light sources and a set of local lights 
from the camera.

We will detail this technique later in the bias compensation section, where it fits better 
context-wise.
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The last technique that we will briefly mention tries to address this problem of glossy inter-
reflection. 

And it does so by creating a set of global VPLs from the light sources and a set of local lights 
from the camera.

We will detail this technique later in the bias compensation section, where it fits better 
context-wise.
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The last technique that we will briefly mention tries to address this problem of glossy inter-
reflection. 

And it does so by creating a set of global VPLs from the light sources and a set of local lights 
from the camera.

We will detail this technique later in the bias compensation section, where it fits better 
context-wise.
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Comparison

Here we have the three most interesting techniques compared in a table.

The rejection of VPLs is very simple to implement and works reasonably well in moderately 
complex scenes.

The metropolis light transport is capable of handling pretty much all types of geometry, but 
at a significant implementation cost.

None of these two techniques explicitly addresses the problem of glossy inter-reflections, 
that’s where the local lights can help a lot.
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at a significant implementation cost.
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that’s where the local lights can help a lot.
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So far we have talked about the generation of VPLs. 

Now we should have a detail look at how we use them to illuminate the scene. 
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We will consider the case when the scene does not contain any participating media. 
The extensions necessary to handle the media can be found in the paper. 

Here we have the rendering equation, let’s just very quickly revisit the individual terms: 

f is the BRDF, G is the geometry term, which accounts for the mutual orientation and distance 
between the two points, V is the visibility between the points, and L is the outgoing radiance.

And you can see that the equation is recursive... 
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In order to solve the equation, we can construct paths between the camera and the light 
sources... 

here you see all the terms defining the throughput of the path and as we mentioned 
previously, the main idea of instant radiosity is to collapse ... this ... subpath into a virtual 
light source.

And once we have these virtual lights, we just need to connect the shaded points to them and 
evaluate the four terms defined with respect to the red connection.
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In order to solve the equation, we can construct paths between the camera and the light 
sources... 

here you see all the terms defining the throughput of the path and as we mentioned 
previously, the main idea of instant radiosity is to collapse ... this ... subpath into a virtual 
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So going back to the rendering equation we can rewrite it for the special case of lighting with 
VPLs: 

the integral is replaced by a sum over the VPLs; the BRDF, the geometry and the visibility 
terms remain the same, 
except that x_2 is the point of the VPL, and the outgoing radiance from point x_2 towards 
point x_1 is replaced by the BRDF at the VPL and its flux, which effectively hides the 
recursion. 
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So going back to the rendering equation we can rewrite it for the special case of lighting with 
VPLs: 

the integral is replaced by a sum over the VPLs; the BRDF, the geometry and the visibility 
terms remain the same, 
except that x_2 is the point of the VPL, and the outgoing radiance from point x_2 towards 
point x_1 is replaced by the BRDF at the VPL and its flux, which effectively hides the 
recursion. 
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Reference

So let’s have a look at an example rendering.  Here we have a path traced image for reference 
and an image rendered using VPLs.

And you can clearly see some splotchy artifacts. There are two reasons why we have these 
splotches.

The first and the more crucial one is the geometry term, which has a squared distance 
between the two points in the denominator. As the distance between the shading point and 
the VPL becomes smaller, the value of the geometry term will grow higher and this is 
emphasized by the fact that we even square the distance. 

So this is the reason why the estimator can have very large values in some cases, the other 
reason why we see the splotches very clearly is that in this case we connect all the shading 
points to the SAME set of VPLs. We get noise-free results, which is one of the biggest 
advantages of instant radiosity, but the estimation error is still there in the form of structured 
artifacts. 
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The first and the more crucial one is the geometry term, which has a squared distance 
between the two points in the denominator. As the distance between the shading point and 
the VPL becomes smaller, the value of the geometry term will grow higher and this is 
emphasized by the fact that we even square the distance. 

So this is the reason why the estimator can have very large values in some cases, the other 
reason why we see the splotches very clearly is that in this case we connect all the shading 
points to the SAME set of VPLs. We get noise-free results, which is one of the biggest 
advantages of instant radiosity, but the estimation error is still there in the form of structured 
artifacts. 
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Now the question is how to get rid off these artifacts.

There have been two major approaches developed for this over the past few years.

The first one is to bound the geometry term... in other words, we clamp its value to a certain 
threshold. 
This removes the splotches, but at the same time we loose some energy and the rendered 
images will become darker. There are several publications trying to recover this missing 
energy. 

The other approach is to distribute the energy over a certain area or volume, so that it is no 
longer concentrated at single points. So instead of removing the energy we rather spread it 
spatially.

So let’s first have a look at techniques that start by bounding the geometry term. 
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The idea is to simply clamp the value of G to a user-defined maximum value.

Here we define the bounded geometry term Gb as a minimum of the original G-term and the 
user-defined threshold b. 

So this is an extremely simple, fast and popular technique, but as you will see, it has some 
major drawbacks. 



Scalable	
  Realistic	
  Rendering	
  
with	
  Many-­‐Light	
  Methods

Bounding	
  the	
  geometry	
  term
prevent	
  G	
  from	
  being	
  very	
  high
	
  b	
  -­‐	
  user-­‐defined	
  maximum	
  value	
  (bound)

41

Bounding	
  &	
  Compensa6on

The idea is to simply clamp the value of G to a user-defined maximum value.

Here we define the bounded geometry term Gb as a minimum of the original G-term and the 
user-defined threshold b. 

So this is an extremely simple, fast and popular technique, but as you will see, it has some 
major drawbacks. 



Scalable	
  Realistic	
  Rendering	
  
with	
  Many-­‐Light	
  Methods

Bounding	
  the	
  geometry	
  term
prevent	
  G	
  from	
  being	
  very	
  high
	
  b	
  -­‐	
  user-­‐defined	
  maximum	
  value	
  (bound)

Advantages:
extremely	
  simple	
  and	
  fast

41

Bounding	
  &	
  Compensa6on

The idea is to simply clamp the value of G to a user-defined maximum value.

Here we define the bounded geometry term Gb as a minimum of the original G-term and the 
user-defined threshold b. 

So this is an extremely simple, fast and popular technique, but as you will see, it has some 
major drawbacks. 



Scalable	
  Realistic	
  Rendering	
  
with	
  Many-­‐Light	
  Methods

Bounding	
  the	
  geometry	
  term
prevent	
  G	
  from	
  being	
  very	
  high
	
  b	
  -­‐	
  user-­‐defined	
  maximum	
  value	
  (bound)

Advantages:
extremely	
  simple	
  and	
  fast

Disadvantages:
removes	
  energy,	
  darkens	
  the	
  image

41

Bounding	
  &	
  Compensa6on

The idea is to simply clamp the value of G to a user-defined maximum value.

Here we define the bounded geometry term Gb as a minimum of the original G-term and the 
user-defined threshold b. 

So this is an extremely simple, fast and popular technique, but as you will see, it has some 
major drawbacks. 



Scalable	
  Realistic	
  Rendering	
  
with	
  Many-­‐Light	
  Methods

42

Bounding	
  &	
  Compensa6on

Reference VPLs

using

Here we have again the reference, the previous VPL rendering,...  and on the right, a VPL 
rendering with the bounded geometry term.

You can see that it is darker around corners and cavities. And since this heavily degrades the 
quality of the rendered images, we shall now try to compensate for the missing energy and 
add it back. 
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Here we have again the reference, the previous VPL rendering,...  and on the right, a VPL 
rendering with the bounded geometry term.

You can see that it is darker around corners and cavities. And since this heavily degrades the 
quality of the rendered images, we shall now try to compensate for the missing energy and 
add it back. 



Scalable	
  Realistic	
  Rendering	
  
with	
  Many-­‐Light	
  Methods

Expressing	
  the	
  energy	
  loss

44

Bounding	
  &	
  Compensa6on

We first need to express the missing energy and for that I will have to use few equations 
unfortunately, but it should be fairly easy to follow. 

First we define a general light transport operator T.

If you are not familiar with the operator notation,... thing of T as an operation that takes the 
outgoing radiance in the scene.... and adds one bounce to it.

Now we can modify T a bit by bounding the geometry term, and this we will call the bounded 
transport operator Tb. 

And we can also express the energy that has been removed by bounding, and this yields the 
residual transport operator Tr. 

You can now forget about these equations ,... all you need to keep in mind is that the original 
transport operator is basically a sum of the bounded and the residual operators. 
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To compute all the light transport we will estimate the bounded transport using VPLs and the 
residual transport we need to try to estimate differently to avoid the splotches and I will now 
review few publications that propose to compute the residual transport slightly differently. 
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To compute all the light transport we will estimate the bounded transport using VPLs and the 
residual transport we need to try to estimate differently to avoid the splotches and I will now 
review few publications that propose to compute the residual transport slightly differently. 
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The first publication addressing the bias issue was the one by Kollig and Keller called “Global 
Illumination in the presence of weak singularities” from 2004.

They define a so-called bias compensation term, which recovers the residual transport. 

The algorithm works like this...
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They first estimate the illumination of the shading point using the bounded operator, 
which will clamp contributions from VPLs on nearby surfaces. 

Here you can see the region, where the bounding occurs. Then they propose to add the 
clamped energy by shooting a ray and if this ray happens to hit a surface inside the bounding 
region, such as in this case, 
they compute the illumination of this point and transport the light to x1 using the residual 
transport operator. 

And since bounding occurs also at the red compensation vertex, they need to repeat the 
compensation recursively until the compensation vertex is outside the bounding region, such 
as this one.
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They first estimate the illumination of the shading point using the bounded operator, 
which will clamp contributions from VPLs on nearby surfaces. 

Here you can see the region, where the bounding occurs. Then they propose to add the 
clamped energy by shooting a ray and if this ray happens to hit a surface inside the bounding 
region, such as in this case, 
they compute the illumination of this point and transport the light to x1 using the residual 
transport operator. 

And since bounding occurs also at the red compensation vertex, they need to repeat the 
compensation recursively until the compensation vertex is outside the bounding region, such 
as this one.



Scalable	
  Realistic	
  Rendering	
  
with	
  Many-­‐Light	
  Methods

49

Bounding	
  &	
  Compensa6on

bounded	
  contribuBon

Bias	
  compensa=on	
  [Kollig	
  and	
  Keller	
  2004],	
  [Raab	
  et	
  al.	
  2008]
trace	
  paths	
  to	
  compute	
  the	
  compensaBon	
  term	
  (residual	
  transport)

They first estimate the illumination of the shading point using the bounded operator, 
which will clamp contributions from VPLs on nearby surfaces. 

Here you can see the region, where the bounding occurs. Then they propose to add the 
clamped energy by shooting a ray and if this ray happens to hit a surface inside the bounding 
region, such as in this case, 
they compute the illumination of this point and transport the light to x1 using the residual 
transport operator. 

And since bounding occurs also at the red compensation vertex, they need to repeat the 
compensation recursively until the compensation vertex is outside the bounding region, such 
as this one.



Scalable	
  Realistic	
  Rendering	
  
with	
  Many-­‐Light	
  Methods

50

Bounding	
  &	
  Compensa6on

region	
  with	
  bounded	
  contribuBon

Bias	
  compensa=on	
  [Kollig	
  and	
  Keller	
  2004],	
  [Raab	
  et	
  al.	
  2008]
trace	
  paths	
  to	
  compute	
  the	
  compensaBon	
  term	
  (residual	
  transport)

They first estimate the illumination of the shading point using the bounded operator, 
which will clamp contributions from VPLs on nearby surfaces. 

Here you can see the region, where the bounding occurs. Then they propose to add the 
clamped energy by shooting a ray and if this ray happens to hit a surface inside the bounding 
region, such as in this case, 
they compute the illumination of this point and transport the light to x1 using the residual 
transport operator. 

And since bounding occurs also at the red compensation vertex, they need to repeat the 
compensation recursively until the compensation vertex is outside the bounding region, such 
as this one.
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They first estimate the illumination of the shading point using the bounded operator, 
which will clamp contributions from VPLs on nearby surfaces. 

Here you can see the region, where the bounding occurs. Then they propose to add the 
clamped energy by shooting a ray and if this ray happens to hit a surface inside the bounding 
region, such as in this case, 
they compute the illumination of this point and transport the light to x1 using the residual 
transport operator. 

And since bounding occurs also at the red compensation vertex, they need to repeat the 
compensation recursively until the compensation vertex is outside the bounding region, such 
as this one.
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They first estimate the illumination of the shading point using the bounded operator, 
which will clamp contributions from VPLs on nearby surfaces. 

Here you can see the region, where the bounding occurs. Then they propose to add the 
clamped energy by shooting a ray and if this ray happens to hit a surface inside the bounding 
region, such as in this case, 
they compute the illumination of this point and transport the light to x1 using the residual 
transport operator. 

And since bounding occurs also at the red compensation vertex, they need to repeat the 
compensation recursively until the compensation vertex is outside the bounding region, such 
as this one.
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They first estimate the illumination of the shading point using the bounded operator, 
which will clamp contributions from VPLs on nearby surfaces. 

Here you can see the region, where the bounding occurs. Then they propose to add the 
clamped energy by shooting a ray and if this ray happens to hit a surface inside the bounding 
region, such as in this case, 
they compute the illumination of this point and transport the light to x1 using the residual 
transport operator. 

And since bounding occurs also at the red compensation vertex, they need to repeat the 
compensation recursively until the compensation vertex is outside the bounding region, such 
as this one.
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They first estimate the illumination of the shading point using the bounded operator, 
which will clamp contributions from VPLs on nearby surfaces. 

Here you can see the region, where the bounding occurs. Then they propose to add the 
clamped energy by shooting a ray and if this ray happens to hit a surface inside the bounding 
region, such as in this case, 
they compute the illumination of this point and transport the light to x1 using the residual 
transport operator. 

And since bounding occurs also at the red compensation vertex, they need to repeat the 
compensation recursively until the compensation vertex is outside the bounding region, such 
as this one.
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They first estimate the illumination of the shading point using the bounded operator, 
which will clamp contributions from VPLs on nearby surfaces. 

Here you can see the region, where the bounding occurs. Then they propose to add the 
clamped energy by shooting a ray and if this ray happens to hit a surface inside the bounding 
region, such as in this case, 
they compute the illumination of this point and transport the light to x1 using the residual 
transport operator. 

And since bounding occurs also at the red compensation vertex, they need to repeat the 
compensation recursively until the compensation vertex is outside the bounding region, such 
as this one.
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They first estimate the illumination of the shading point using the bounded operator, 
which will clamp contributions from VPLs on nearby surfaces. 

Here you can see the region, where the bounding occurs. Then they propose to add the 
clamped energy by shooting a ray and if this ray happens to hit a surface inside the bounding 
region, such as in this case, 
they compute the illumination of this point and transport the light to x1 using the residual 
transport operator. 

And since bounding occurs also at the red compensation vertex, they need to repeat the 
compensation recursively until the compensation vertex is outside the bounding region, such 
as this one.
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The advantage of this bias compensation technique is that it recovers all the energy that was 
removed by bounding,
which makes the algorithm unbiased again. 

The biggest problem is that this technique is recursive; it simply degenerates to fairly 
expensive path tracing and the bias compensation can thus easily increase the rendering time 
by an order of magnitude.
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The advantage of this bias compensation technique is that it recovers all the energy that was 
removed by bounding,
which makes the algorithm unbiased again. 

The biggest problem is that this technique is recursive; it simply degenerates to fairly 
expensive path tracing and the bias compensation can thus easily increase the rendering time 
by an order of magnitude.
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The advantage of this bias compensation technique is that it recovers all the energy that was 
removed by bounding,
which makes the algorithm unbiased again. 

The biggest problem is that this technique is recursive; it simply degenerates to fairly 
expensive path tracing and the bias compensation can thus easily increase the rendering time 
by an order of magnitude.
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Here we see a comparison, notice how the window blinds in the left biased image are much 
darker than in the unbiased rendering on the right. 
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In 2010, Davidovič and colleagues proposed a slightly different approach, which addresses 
the performance of the compensation.

Their idea is to, in addition to the global VPLs that distributed from the light source, also 
create local virtual lights that provide the residual transport.

Here we have the same situation as before, we have the compensation vertex, which gets 
illuminated by the global VPLs.

And to amortize the creation of this vertex the authors turn it into a local virtual point light 
that is used to illuminate several surface points around X1. 
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Their idea is to, in addition to the global VPLs that distributed from the light source, also 
create local virtual lights that provide the residual transport.

Here we have the same situation as before, we have the compensation vertex, which gets 
illuminated by the global VPLs.

And to amortize the creation of this vertex the authors turn it into a local virtual point light 
that is used to illuminate several surface points around X1. 
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In 2010, Davidovič and colleagues proposed a slightly different approach, which addresses 
the performance of the compensation.

Their idea is to, in addition to the global VPLs that distributed from the light source, also 
create local virtual lights that provide the residual transport.

Here we have the same situation as before, we have the compensation vertex, which gets 
illuminated by the global VPLs.

And to amortize the creation of this vertex the authors turn it into a local virtual point light 
that is used to illuminate several surface points around X1. 
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In 2010, Davidovič and colleagues proposed a slightly different approach, which addresses 
the performance of the compensation.

Their idea is to, in addition to the global VPLs that distributed from the light source, also 
create local virtual lights that provide the residual transport.

Here we have the same situation as before, we have the compensation vertex, which gets 
illuminated by the global VPLs.

And to amortize the creation of this vertex the authors turn it into a local virtual point light 
that is used to illuminate several surface points around X1. 
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In 2010, Davidovič and colleagues proposed a slightly different approach, which addresses 
the performance of the compensation.

Their idea is to, in addition to the global VPLs that distributed from the light source, also 
create local virtual lights that provide the residual transport.

Here we have the same situation as before, we have the compensation vertex, which gets 
illuminated by the global VPLs.

And to amortize the creation of this vertex the authors turn it into a local virtual point light 
that is used to illuminate several surface points around X1. 
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In 2010, Davidovič and colleagues proposed a slightly different approach, which addresses 
the performance of the compensation.

Their idea is to, in addition to the global VPLs that distributed from the light source, also 
create local virtual lights that provide the residual transport.

Here we have the same situation as before, we have the compensation vertex, which gets 
illuminated by the global VPLs.

And to amortize the creation of this vertex the authors turn it into a local virtual point light 
that is used to illuminate several surface points around X1. 



Scalable	
  Realistic	
  Rendering	
  
with	
  Many-­‐Light	
  Methods

Local	
  Virtual	
  Lights	
  [Davidovič	
  et	
  al.	
  2010]
global	
  (bounded)	
  transport:	
  VPLs
local	
  (residual)	
  transport:	
  on-­‐demand	
  local	
  virtual	
  lights

64

Bounding	
  &	
  Compensa6on

When compared to the original bias compensation, this technique is more efficient since it 
uses each compensation vertex for multiple pixels.
It also handles well the glossy inter-reflections. 

One drawback is that the implementation approximates visibility, which can lead to missing 
indirect shadows. 
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When compared to the original bias compensation, this technique is more efficient since it 
uses each compensation vertex for multiple pixels.
It also handles well the glossy inter-reflections. 

One drawback is that the implementation approximates visibility, which can lead to missing 
indirect shadows. 
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When compared to the original bias compensation, this technique is more efficient since it 
uses each compensation vertex for multiple pixels.
It also handles well the glossy inter-reflections. 

One drawback is that the implementation approximates visibility, which can lead to missing 
indirect shadows. 
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Global	
  (bounded) Composited
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Local	
  (residual)

Here we see the two components, the global bounded and the local residual transport and the 
final composited image.
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Carsten, Thomas Engelhardt and me, we also had a look on how to compensate for the bias 
efficiently, preferably in realtime.

We found out that we can approximate the residual transport using post-processing filter in 
screen-space. To convince you that this is possible I will now have to work out few equations, 
so bear with me for a moment.

Here we have the rendering equation, which we can expand once, to separate the emission, 
direct illumination, and indirect illumination that is computed using VPLs, and the last term 
we then further split into the bounded and residual transport. 

And for the residual transport we should not use the VPLs, this would give us the splotches, 
so instead we plug in the corresponding general illumination.

By expanding the equation further we would notice that the rendering equation can be 
rewritten into this form...
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Carsten, Thomas Engelhardt and me, we also had a look on how to compensate for the bias 
efficiently, preferably in realtime.

We found out that we can approximate the residual transport using post-processing filter in 
screen-space. To convince you that this is possible I will now have to work out few equations, 
so bear with me for a moment.

Here we have the rendering equation, which we can expand once, to separate the emission, 
direct illumination, and indirect illumination that is computed using VPLs, and the last term 
we then further split into the bounded and residual transport. 

And for the residual transport we should not use the VPLs, this would give us the splotches, 
so instead we plug in the corresponding general illumination.

By expanding the equation further we would notice that the rendering equation can be 
rewritten into this form...
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Carsten, Thomas Engelhardt and me, we also had a look on how to compensate for the bias 
efficiently, preferably in realtime.

We found out that we can approximate the residual transport using post-processing filter in 
screen-space. To convince you that this is possible I will now have to work out few equations, 
so bear with me for a moment.

Here we have the rendering equation, which we can expand once, to separate the emission, 
direct illumination, and indirect illumination that is computed using VPLs, and the last term 
we then further split into the bounded and residual transport. 

And for the residual transport we should not use the VPLs, this would give us the splotches, 
so instead we plug in the corresponding general illumination.

By expanding the equation further we would notice that the rendering equation can be 
rewritten into this form...
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Carsten, Thomas Engelhardt and me, we also had a look on how to compensate for the bias 
efficiently, preferably in realtime.

We found out that we can approximate the residual transport using post-processing filter in 
screen-space. To convince you that this is possible I will now have to work out few equations, 
so bear with me for a moment.

Here we have the rendering equation, which we can expand once, to separate the emission, 
direct illumination, and indirect illumination that is computed using VPLs, and the last term 
we then further split into the bounded and residual transport. 

And for the residual transport we should not use the VPLs, this would give us the splotches, 
so instead we plug in the corresponding general illumination.

By expanding the equation further we would notice that the rendering equation can be 
rewritten into this form...
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Carsten, Thomas Engelhardt and me, we also had a look on how to compensate for the bias 
efficiently, preferably in realtime.

We found out that we can approximate the residual transport using post-processing filter in 
screen-space. To convince you that this is possible I will now have to work out few equations, 
so bear with me for a moment.

Here we have the rendering equation, which we can expand once, to separate the emission, 
direct illumination, and indirect illumination that is computed using VPLs, and the last term 
we then further split into the bounded and residual transport. 

And for the residual transport we should not use the VPLs, this would give us the splotches, 
so instead we plug in the corresponding general illumination.

By expanding the equation further we would notice that the rendering equation can be 
rewritten into this form...
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Carsten, Thomas Engelhardt and me, we also had a look on how to compensate for the bias 
efficiently, preferably in realtime.

We found out that we can approximate the residual transport using post-processing filter in 
screen-space. To convince you that this is possible I will now have to work out few equations, 
so bear with me for a moment.

Here we have the rendering equation, which we can expand once, to separate the emission, 
direct illumination, and indirect illumination that is computed using VPLs, and the last term 
we then further split into the bounded and residual transport. 

And for the residual transport we should not use the VPLs, this would give us the splotches, 
so instead we plug in the corresponding general illumination.

By expanding the equation further we would notice that the rendering equation can be 
rewritten into this form...



Scalable	
  Realistic	
  Rendering	
  
with	
  Many-­‐Light	
  Methods

Screen-­‐space	
  Bias	
  Compensa=on	
  [Novák	
  et	
  al.	
  2011]
residual	
  transport	
  is	
  localized	
  and	
  can	
  be	
  applied	
  in	
  post-­‐process

Rendering	
  EquaBon:

69

Bounding	
  &	
  Compensa6on

recursively	
  expand

}

Carsten, Thomas Engelhardt and me, we also had a look on how to compensate for the bias 
efficiently, preferably in realtime.

We found out that we can approximate the residual transport using post-processing filter in 
screen-space. To convince you that this is possible I will now have to work out few equations, 
so bear with me for a moment.

Here we have the rendering equation, which we can expand once, to separate the emission, 
direct illumination, and indirect illumination that is computed using VPLs, and the last term 
we then further split into the bounded and residual transport. 

And for the residual transport we should not use the VPLs, this would give us the splotches, 
so instead we plug in the corresponding general illumination.

By expanding the equation further we would notice that the rendering equation can be 
rewritten into this form...
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Carsten, Thomas Engelhardt and me, we also had a look on how to compensate for the bias 
efficiently, preferably in realtime.

We found out that we can approximate the residual transport using post-processing filter in 
screen-space. To convince you that this is possible I will now have to work out few equations, 
so bear with me for a moment.

Here we have the rendering equation, which we can expand once, to separate the emission, 
direct illumination, and indirect illumination that is computed using VPLs, and the last term 
we then further split into the bounded and residual transport. 

And for the residual transport we should not use the VPLs, this would give us the splotches, 
so instead we plug in the corresponding general illumination.

By expanding the equation further we would notice that the rendering equation can be 
rewritten into this form...
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Carsten, Thomas Engelhardt and me, we also had a look on how to compensate for the bias 
efficiently, preferably in realtime.

We found out that we can approximate the residual transport using post-processing filter in 
screen-space. To convince you that this is possible I will now have to work out few equations, 
so bear with me for a moment.

Here we have the rendering equation, which we can expand once, to separate the emission, 
direct illumination, and indirect illumination that is computed using VPLs, and the last term 
we then further split into the bounded and residual transport. 

And for the residual transport we should not use the VPLs, this would give us the splotches, 
so instead we plug in the corresponding general illumination.

By expanding the equation further we would notice that the rendering equation can be 
rewritten into this form...
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Carsten, Thomas Engelhardt and me, we also had a look on how to compensate for the bias 
efficiently, preferably in realtime.

We found out that we can approximate the residual transport using post-processing filter in 
screen-space. To convince you that this is possible I will now have to work out few equations, 
so bear with me for a moment.

Here we have the rendering equation, which we can expand once, to separate the emission, 
direct illumination, and indirect illumination that is computed using VPLs, and the last term 
we then further split into the bounded and residual transport. 

And for the residual transport we should not use the VPLs, this would give us the splotches, 
so instead we plug in the corresponding general illumination.

By expanding the equation further we would notice that the rendering equation can be 
rewritten into this form...
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Here is one specific example:

We first render the direct and bounded indirect illumination. 

And then we use this image as the input for the computing the residual transport in screen-
space. The result of this is then added to the bounded solution and also used as the input for 
another screen-space integration step, which yields an extra bounce of the residual transport. 
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Here is one specific example:

We first render the direct and bounded indirect illumination. 

And then we use this image as the input for the computing the residual transport in screen-
space. The result of this is then added to the bounded solution and also used as the input for 
another screen-space integration step, which yields an extra bounce of the residual transport. 
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Here is one specific example:

We first render the direct and bounded indirect illumination. 

And then we use this image as the input for the computing the residual transport in screen-
space. The result of this is then added to the bounded solution and also used as the input for 
another screen-space integration step, which yields an extra bounce of the residual transport. 
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...

Here is one specific example:

We first render the direct and bounded indirect illumination. 

And then we use this image as the input for the computing the residual transport in screen-
space. The result of this is then added to the bounded solution and also used as the input for 
another screen-space integration step, which yields an extra bounce of the residual transport. 
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We found that 2 steps are usually sufficient, and since the technique is effectively an image 
filter, it can be implemented on the GPU and further accelerated using hierarchical 
integration. 

The main advantage of this approach is that it is very fast. 

The bad side of things is that since we use only the information available in the raster, it is 
approximate and needs to be conservative otherwise artifacts may occur.
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The bad side of things is that since we use only the information available in the raster, it is 
approximate and needs to be conservative otherwise artifacts may occur.
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We found that 2 steps are usually sufficient, and since the technique is effectively an image 
filter, it can be implemented on the GPU and further accelerated using hierarchical 
integration. 

The main advantage of this approach is that it is very fast. 

The bad side of things is that since we use only the information available in the raster, it is 
approximate and needs to be conservative otherwise artifacts may occur.
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We found that 2 steps are usually sufficient, and since the technique is effectively an image 
filter, it can be implemented on the GPU and further accelerated using hierarchical 
integration. 

The main advantage of this approach is that it is very fast. 

The bad side of things is that since we use only the information available in the raster, it is 
approximate and needs to be conservative otherwise artifacts may occur.
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Let’s quickly look at some results...

you can see that the residual energy recovered using 2 steps of the screen-space bias makes 
a noticeable difference in the final composite. 
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We also looked into the problem of bias compensation for participating media.

This paper was published last year and it contains a lot of analysis and comparisons, which 
are however fairly specific and thus I will only show some measurements that generalize to 
most of the VPL algorithms. 

Here we see a reference rendering of a rising smoke. 

And these two are VPL rendering with unbounded and bounded geometry term. You can see 
that the artifacts in the media are more severe than on surfaces and the bounding removes 
really a lot of energy. 
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most of the VPL algorithms. 
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We also looked into the problem of bias compensation for participating media.

This paper was published last year and it contains a lot of analysis and comparisons, which 
are however fairly specific and thus I will only show some measurements that generalize to 
most of the VPL algorithms. 

Here we see a reference rendering of a rising smoke. 

And these two are VPL rendering with unbounded and bounded geometry term. You can see 
that the artifacts in the media are more severe than on surfaces and the bounding removes 
really a lot of energy. 
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We also looked into the problem of bias compensation for participating media.

This paper was published last year and it contains a lot of analysis and comparisons, which 
are however fairly specific and thus I will only show some measurements that generalize to 
most of the VPL algorithms. 

Here we see a reference rendering of a rising smoke. 

And these two are VPL rendering with unbounded and bounded geometry term. You can see 
that the artifacts in the media are more severe than on surfaces and the bounding removes 
really a lot of energy. 
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So let’s inspect it more in detail.  I will now plot the pixel intensity along the yellow line. 

Here we have the reference in green.

This yellow curve is for unbounded VPLs, you can see the spikes, they correspond to the high 
intensity splotches in the image. 

Bounding the geometry term removes the spikes but also looses a lot of energy. 

We can add this back by compensating for the bounding, this red curve corresponds to one 
bounce of the residual transport. 

And if we add one more bounce, we get pretty close to the reference already. (This was the 
motivation in the screen-space bias compensation paper for using only the steps.)
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So let’s inspect it more in detail.  I will now plot the pixel intensity along the yellow line. 

Here we have the reference in green.

This yellow curve is for unbounded VPLs, you can see the spikes, they correspond to the high 
intensity splotches in the image. 

Bounding the geometry term removes the spikes but also looses a lot of energy. 

We can add this back by compensating for the bounding, this red curve corresponds to one 
bounce of the residual transport. 

And if we add one more bounce, we get pretty close to the reference already. (This was the 
motivation in the screen-space bias compensation paper for using only the steps.)
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So let’s inspect it more in detail.  I will now plot the pixel intensity along the yellow line. 

Here we have the reference in green.

This yellow curve is for unbounded VPLs, you can see the spikes, they correspond to the high 
intensity splotches in the image. 

Bounding the geometry term removes the spikes but also looses a lot of energy. 

We can add this back by compensating for the bounding, this red curve corresponds to one 
bounce of the residual transport. 

And if we add one more bounce, we get pretty close to the reference already. (This was the 
motivation in the screen-space bias compensation paper for using only the steps.)
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So let’s inspect it more in detail.  I will now plot the pixel intensity along the yellow line. 

Here we have the reference in green.

This yellow curve is for unbounded VPLs, you can see the spikes, they correspond to the high 
intensity splotches in the image. 

Bounding the geometry term removes the spikes but also looses a lot of energy. 

We can add this back by compensating for the bounding, this red curve corresponds to one 
bounce of the residual transport. 

And if we add one more bounce, we get pretty close to the reference already. (This was the 
motivation in the screen-space bias compensation paper for using only the steps.)
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So let’s inspect it more in detail.  I will now plot the pixel intensity along the yellow line. 

Here we have the reference in green.

This yellow curve is for unbounded VPLs, you can see the spikes, they correspond to the high 
intensity splotches in the image. 

Bounding the geometry term removes the spikes but also looses a lot of energy. 

We can add this back by compensating for the bounding, this red curve corresponds to one 
bounce of the residual transport. 

And if we add one more bounce, we get pretty close to the reference already. (This was the 
motivation in the screen-space bias compensation paper for using only the steps.)
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So let’s inspect it more in detail.  I will now plot the pixel intensity along the yellow line. 

Here we have the reference in green.

This yellow curve is for unbounded VPLs, you can see the spikes, they correspond to the high 
intensity splotches in the image. 

Bounding the geometry term removes the spikes but also looses a lot of energy. 

We can add this back by compensating for the bounding, this red curve corresponds to one 
bounce of the residual transport. 

And if we add one more bounce, we get pretty close to the reference already. (This was the 
motivation in the screen-space bias compensation paper for using only the steps.)
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As I said, I will not go into the details, they can be found in the paper... 

based on the analysis and several other measurements we found that assuming the medium 
to be locally homogeneous just for the compensation makes the computation of the residual 
transport much faster and so does omitting the visibility tests.

The technique is relatively fast and GPU friendly, it is however again only approximate and 
fairly convoluted.



Scalable	
  Realistic	
  Rendering	
  
with	
  Many-­‐Light	
  Methods

Approximate	
  Bias	
  Compensa=on	
  [Engelhardt	
  et	
  al.	
  2012]
efficient	
  compensaBon	
  for	
  parBcipaBng	
  media

81

Bounding	
  &	
  Compensa6on

Op=miza=ons	
  used	
  for	
  BC:
assume	
  locally	
  homogeneous	
  media
omit	
  tesBng	
  local	
  visibility

As I said, I will not go into the details, they can be found in the paper... 

based on the analysis and several other measurements we found that assuming the medium 
to be locally homogeneous just for the compensation makes the computation of the residual 
transport much faster and so does omitting the visibility tests.

The technique is relatively fast and GPU friendly, it is however again only approximate and 
fairly convoluted.



Scalable	
  Realistic	
  Rendering	
  
with	
  Many-­‐Light	
  Methods

Approximate	
  Bias	
  Compensa=on	
  [Engelhardt	
  et	
  al.	
  2012]
efficient	
  compensaBon	
  for	
  parBcipaBng	
  media

81

Bounding	
  &	
  Compensa6on

Op=miza=ons	
  used	
  for	
  BC:
assume	
  locally	
  homogeneous	
  media
omit	
  tesBng	
  local	
  visibility

Advantages:
fast,	
  GPU	
  friendly

As I said, I will not go into the details, they can be found in the paper... 

based on the analysis and several other measurements we found that assuming the medium 
to be locally homogeneous just for the compensation makes the computation of the residual 
transport much faster and so does omitting the visibility tests.

The technique is relatively fast and GPU friendly, it is however again only approximate and 
fairly convoluted.



Scalable	
  Realistic	
  Rendering	
  
with	
  Many-­‐Light	
  Methods

Approximate	
  Bias	
  Compensa=on	
  [Engelhardt	
  et	
  al.	
  2012]
efficient	
  compensaBon	
  for	
  parBcipaBng	
  media

81

Bounding	
  &	
  Compensa6on

Op=miza=ons	
  used	
  for	
  BC:
assume	
  locally	
  homogeneous	
  media
omit	
  tesBng	
  local	
  visibility

Advantages:
fast,	
  GPU	
  friendly

Disadvantages:
approximate,	
  complicated

As I said, I will not go into the details, they can be found in the paper... 

based on the analysis and several other measurements we found that assuming the medium 
to be locally homogeneous just for the compensation makes the computation of the residual 
transport much faster and so does omitting the visibility tests.

The technique is relatively fast and GPU friendly, it is however again only approximate and 
fairly convoluted.



Scalable	
  Realistic	
  Rendering	
  
with	
  Many-­‐Light	
  Methods

Approximate	
  Bias	
  Compensa=on	
  [Engelhardt	
  et	
  al.	
  2012]

82

Bounding	
  &	
  Compensa6on

bounded:	
  39	
  min.
approx.	
  bias	
  comp.:	
  13	
  min.

Here you can see an example rendering, computing the bounded transport took 39 minutes, 
the approximate bias compensation only 13 minutes. 
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  need	
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  for	
  the	
  bounding
[Kollig	
  and	
  Keller	
  2004],	
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  et	
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  2010],	
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  et	
  al.	
  2012]
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  et	
  al.	
  2012a],	
  [Novák	
  et	
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  2012b]
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Ok, so these were four techniques that avoid the splotches by first bounding the geometry 
term and then trying to recover the removed energy using a different integration scheme. 

The other class of techniques tries to avoid the splotches by spatially spreading the energy so 
that it is no longer concentrated at single points
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The first one to propose this was Hašan and colleagues at Siggraph Asia 2009 who presented 
a new lighting primitive called virtual spherical light. 

Here we have an illustration showing a shading point and a VPL.

And the light that reaches the shading point from the VPL is defined by this equation. 

These are the terms that cause the splotches.
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To reduce the splotches, the authors propose to inflate the point light into a sphere and 
distribute its flux over the surfaces inside the sphere.

The point-to-point evaluation is thus replaced by an approximation of a sphere-to-point 
transfer.

You can see that we now integrate over the solid angle Omega subtended by the sphere, 
which removes the squared distance, and also averages the values of the BRDFs over the solid 
angle.
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To reduce the noise due to the numerical integration, they propose to combine sampling of 
the cone with importance sampling of each of the BRDFs using multiple importance sampling.



Scalable	
  Realistic	
  Rendering	
  
with	
  Many-­‐Light	
  Methods

86

Spreading	
  the	
  Energy

cone	
  sampling BRDF1	
  sampling BRDF2	
  sampling
MulBple	
  importance

sampling

Virtual	
  Spherical	
  Lights	
  [Hašan	
  et	
  al.	
  2009]
distribute	
  the	
  energy	
  of	
  the	
  infinitesimal	
  VPL	
  over	
  nearby	
  surfaces
inside	
  a	
  sphere

To reduce the noise due to the numerical integration, they propose to combine sampling of 
the cone with importance sampling of each of the BRDFs using multiple importance sampling.
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So the main advantage of spherical lights is that no energy is removed, it is only blurred. This 
introduces some systematic error, but in general seems to be better than clamping.

The integration also increases the computation time, but can be GPU accelerated. 
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Reference Bounded VSLs

1	
  min	
  44	
  sec32	
  sec2.2	
  hours

Here we have a comparison in a scene with highly glossy anisotropic material. 

You can see that VSLs preserve the energy, the illumination features are just a bit blurry. 

This can be seen in this close-up in the middle image, which uses only 5000 VSLs. 

As we increase the number of VSLs, the results get closer to the reference.
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Here we have a comparison in a scene with highly glossy anisotropic material. 

You can see that VSLs preserve the energy, the illumination features are just a bit blurry. 

This can be seen in this close-up in the middle image, which uses only 5000 VSLs. 

As we increase the number of VSLs, the results get closer to the reference.
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A great opportunity for spreading the energy arises in participating media, where scattering 
of light can be formulated continuously along rays.

We leveraged this observation and about a year ago proposed a new lighting primitive called 
virtual ray lights. 

On your left-hand side you can see a few VPLs that were created from vertices of two random 
walks. 
The idea of ray lights is to use entire segments of the walk and turn them into linear light 
sources. 
This yields denser sampling of the path space and provably reduces the degree of the 
singularity. 
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sources. 
This yields denser sampling of the path space and provably reduces the degree of the 
singularity. 



Scalable	
  Realistic	
  Rendering	
  
with	
  Many-­‐Light	
  Methods

Virtual	
  Ray	
  Lights	
  [Novák	
  et	
  al.	
  2012a]
many-­‐light	
  technique	
  for	
  parBcipaBng	
  media
use	
  segments	
  of	
  the	
  random	
  walk	
  as	
  light	
  sources

90

Spreading	
  the	
  Energy

Virtual	
  Point	
  Lights Virtual	
  Ray	
  Lights

higher	
  sampling	
  of	
  path	
  space
provably	
  reduce	
  singulariBes

A great opportunity for spreading the energy arises in participating media, where scattering 
of light can be formulated continuously along rays.

We leveraged this observation and about a year ago proposed a new lighting primitive called 
virtual ray lights. 

On your left-hand side you can see a few VPLs that were created from vertices of two random 
walks. 
The idea of ray lights is to use entire segments of the walk and turn them into linear light 
sources. 
This yields denser sampling of the path space and provably reduces the degree of the 
singularity. 
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Here is an animation how the algorithm works.

We take each segment, turn it into a light source and compute the contribution to the camera 
ray and to the surface point. 
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VRLs

Here we have a progressive rendering of multiple scattering. 

You can see the individual ray lights, but they average out quite quickly and there is no 
bounding applied. 
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VRLs VPLs

This video compares the temporal stability, which is usually pretty bad with VPLs as you can 
see in the right sequence. 

In contrast, the ray lights on the left do not suffer from any flickering. 
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The big advantage of ray lights is that the spreading of energy does not introduce any bias, 
since we take advantage of the continuous scattering of light in media.

The singularity is reduced, although not removed completely. 

The major drawback is the slightly more involved integration, but in the paper we provide two 
suitable importance sampling strategies make it efficient. 
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And here is a comparison of multiple scattering in orange juice.

There was no clamping used in each of the techniques and in the insets you can see that after 
twenty minutes the ray light rendering is almost perfectly converged, whereas VPLs still suffer 
from some artifacts.
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The last technique that I will mention is a follow up on the ray lights. 

It was inspired by the spherical lights; we basically take each ray light and inflate it into a 
beam. This removes the singularities completely. 
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10	
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9	
  sec 63	
  sec 63	
  sec 52	
  sec
media-­‐to-­‐media media-­‐to-­‐surface surface-­‐to-­‐media surface-­‐to-­‐surface

Vitual	
  Ray	
  Lights

Vitual	
  Beam	
  Lights
Here we have few example renderings.

I will not explain the details since we do not have time for it but on top you see some 
renderings with ray lights after short rendering time and you can see some artifacts.

At the bottom we have the beam lights with the same number of lighting primitives and you 
can see that the artifacts are not present anymore and the rendering time increases only 
slightly. 
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Buddha Scene
homogeneous

anisotropic (HG g= 0.7)
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You see a progressive rendering with the ray lights on the left and beam lights on the right.

And you can see that in each of the different light transports the artifacts are reduced and 
beam lights provide quality previews already after short amount of time.
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All-in-all the progressive virtual beam lights combine several techniques. 

We use the same reasoning to inflate the ray lights into beams, as was used for inflating 
point lights into spheres.

And we also formulate the algorithm progressively so that the thickness of the beams is 
reduced in each frame yielding convergent results. 

The disadvantage is that the integration becomes again a bit more expensive. Also, some of 
the sharp features may be over-blurred at the beginning of the progressive rendering.
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Ok, so we covered quite a few techniques that address high quality lighting with VPLs. 

Here we have a very short summary for algorithms that handle surface illumination. All of 
them trade speed for quality and considering all the aspects there is no clear winner.

If you aim at speed, you do not want to just clamp, than you can use the screen space bias 
compensation. 

For higher quality you should look into VSLs or local lights. 

For unbiased rendering you can use the original bias compensation technique by Kollig and 
Keller, but then it might be worth considering a completely different algorithm.
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Ok, so we covered quite a few techniques that address high quality lighting with VPLs. 

Here we have a very short summary for algorithms that handle surface illumination. All of 
them trade speed for quality and considering all the aspects there is no clear winner.

If you aim at speed, you do not want to just clamp, than you can use the screen space bias 
compensation. 

For higher quality you should look into VSLs or local lights. 

For unbiased rendering you can use the original bias compensation technique by Kollig and 
Keller, but then it might be worth considering a completely different algorithm.
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Here we have an analogous comparison of techniques handling the media.

Here the situation is a bit easier, both the ray and beam lights seem to perform better than 
algorithms using point lights. 

This is simply because in media we can distribute the energy along lines and this greatly 
reduces the problems.
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