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Fig. 1. We enhance material definitions of existing 3D assets (a) by applying effects specified by text prompts such as aging, weathering, etc. Conditioned on

a set of renderings, we synthesize the corresponding visuals in 2D using a diffusion model building on multi-view visual prompting [Deng et al. 2024] (b).
We improve the multi-view consistency of the generator using two key additions—view-correlated noise and attention biasing (c)—that enable succesful
inverse-rendering of the visual enhancements back to the original material textures (d).

We present a tool for enhancing the detail of physically based materials using

an off-the-shelf diffusionmodel and inverse rendering. Our goal is to increase

the visual fidelity of existing materials by adding, for instance, signs of wear,

aging, and weathering that are tedious to author. To obtain realistic appear-

ance with minimal user effort, we leverage a generative image model trained

on a large dataset of natural images. Given the geometry, UV mapping, and

basic appearance of an object, we proceed as follows: We render multiple

views of the object and use them, together with an appearance-defining text
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prompt, to condition a diffusion model. The generated details are then back-

propagated from the enhanced images to the material parameters via inverse

rendering. For inverse rendering to be successful, the generated appearance

has to be consistent across all the images. We propose two priors to address

the multi-view consistency of the diffusion model. First, we ensure that the

noise that seeds the diffusion process is itself consistent across views by

integrating it from a view-independent UV space. Second, we enforce spatial

consistency by biasing the attention mechanism via a projective constraint

so that pixels attend strongly to their corresponding pixel locations in other

views. Our approach does not require any training or finetuning of the

diffusion model, is agnostic to the used material model, and the enhanced

material properties, i.e., 2D PBR textures, can be further edited by artists. We

demonstrate prompt-based material edits exhibiting high levels of realism

and detail. This project is available at https://generative-detail.github.io.
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1 INTRODUCTION

Depicting rich 3D worlds is a driving goal of computer graphics.

While achieving this goal is possible today for experienced artists

with expert tools, the pareto principle applies: The creative step of

authoring the overall look of an asset takes little time in comparison

to the disproportionate effort of infusing details and imperfections

of the real world. Our goal is therefore to create a tool that enhances

3D objects with appearance details requiring comparatively minimal

effort from the artist.

For this, we turn to diffusion models [Ho et al. 2020] that are

capable of producing realistic visuals and can be conditioned using

text prompts and guiding images. A key consideration, however, is

the amount of training data available. While datasets containing

3D objects and materials exist [Deitke et al. 2022; Vecchio and De-

schaintre 2024], they cannot compete with natural image datasets

in size and diversity, which directly impacts the model capabilities.

We therefore build our tool using an off-the-shelf diffusion model

that was trained on an internet-scale image set.

We combine the diffusion model with a physically based ren-

derer to enable two key editing features: 1) specifying the initial

look of the object, and 2) outputing a material representation that

is complient with traditional authoring workflows. Our algorithm

works as follows. We start by rendering the original 3D asset from

multiple views. Then we condition the diffusion model on a con-

catenation of these views, and a text prompt describing the desired

detail enhancements. Since our goal is to merely enhance the ap-

pearance, we propose a specific way of using two publicly available

ControlNets [Zhang et al. 2023] to condition the model on the asset

geometry and initial appearance. Finally, the differences between

the original renderings and the diffusion-generated views are back-

propagated to the material parameters via inverse rendering.

The main challenge of multi-view generation with diffusion mod-

els is the consistency of individual details in all relevant views. We

address this challenge with two contributions. First, we seed the dif-

fusion model with noise that is itself consistent across the views. We

adopt the idea of integral noise [Chang et al. 2024] and project a com-

mon UV-space noise pattern into each view in a variance-preserving

manner. Second, we bias the attention maps in the diffusion model

to encourage pixels to attend to their corresponding locations in

different views. We compute the correspondences by reprojecting

points between the views using ray tracing operations.

Our approach has several benefits. It avoids the impractical cre-

ation of a new dataset and/or retraining a large diffusion model. We

preserve the original geometry and artistic intent, while modifying

the material texture maps according to the user’s target prompts.

Because we only enhance the input material, the inverse render-

ing is more likely to succeed than if starting the optimization from

scratch. Lastly, the input and output of our model are in the form

of a classical 3D representation (e.g, triangles, textures) and thus

perfectly multi-view consistent. This also allows users to further

edit the appearance, integrate it into larger scenes, and render with

common renderers.

2 PRIOR WORK

We review the related prior work in the following categories:

Multi-view consistency via latents sharing. TexPainter [Zhang et al.
2024b] and SyncMVD [Liu et al. 2024] denoise multi-view latents,

and correlate the views in a shared texture space. Tex4D [Bao et al.

2024] extends the idea to the temporal domain using a video dif-

fusion model. These methods however do not easily generalize to

view dependent PBR materials. Patashnik et al. [2024] and Pandey

et al. [2023] instead operate on intermediate features of the network

to enforce 3D consistent transformations in the output images.

Another approach is to reuse the diffusion model’s input noise

across views as proposed by [Chang et al. 2024; Daras et al. 2024].

Our work extends this idea by anchoring the noise field in UV space

for a more robust handling of disocclusions.

Multi-view consistency via view correspondences. Cross-frame at-

tention modules have been devised for known depth maps [Tang

et al. 2023], poses [Cerkezi et al. 2023], or epipolar constraints [Kant

et al. 2024]. These methods however require large-scale training.

Our method exploits the known UV mapping, and similarly to

SyncTweedies [Kim et al. 2024], is training-free.

Text-guided 3D generation. DreamFusion [2023] pioneered gener-

ation of 3D models using text-to-image diffusion and score distil-

lation sampling (SDS). The method has been extended to various

representations [Lin et al. 2023; Yi et al. 2023], with improved ob-

jective functions [Wang et al. 2023; Xu et al. 2023], sampling [Zhu

and Zhuang 2023], and material decomposition [Chen et al. 2023a;

Youwang et al. 2024]. We provide additional discussion on how our

method relates to SDS in the supplementary document.

Early methods [Cao et al. 2023; Chen et al. 2023b; Richardson et al.

2023] suffer from over-blurring due to the lack of view consistency.

Follow-up work improved this using spatial attention [Shi et al.

2023], video-models [Voleti et al. 2024; Wu et al. 2024], and tiled

inputs [Deng et al. 2024]. We use the latter idea in our work.

FlashTex [Deng et al. 2024], DreamMat [Zhang et al. 2024a], and

MaPa [Zhang et al. 2024c] specialize in material reconstruction

for a known scene. They leverage known priors by training a con-

trolnet [Zhang et al. 2023] from geometry buffers (e.g. depth and

normal), and lighting rendered with known, constant, materials (e.g.

fully diffuse and specular). This helps greatly with view dependent

shading effects, and separating shadows from material albedo. Vec-

chio et al. [2024] train a generative model to directly synthesize

material maps. All these methods are costly as they require training

with specialized object/material datasets, which we avoid.

Image and appearance editing. Text-guided diffusion models are

often applied to image editing while preserving the semantics of the

source image. This is achieved by manipulating the self-attention

layers [Tumanyan et al. 2023], often combined with DDIM inver-

sion [Mokady et al. 2023; Parmar et al. 2023]. RGB↔X [Zeng et al.
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Fig. 2. Pipeline overview: Given a 3D asset including fixed geometry and initial material textures, we render color and normal images from multiple viewpoints

(4 out of 16 views shown above). We then apply enhancements based on text prompts using a multi-view diffusion model designed to produce view-consistent

outputs that edit the input images in a controllable manner. We achieve this by leveraging three distinct techniques, including suitable publicly available

ControlNets, view-correlated noise, and cross-view attention bias. We finally obtain the edited material textures using inverse rendering.

2024] allows editing the content of images by first extracting irradi-

ance and material maps, manually editing them, and then generat-

ing the corresponding realistic image. We consider a dual problem,

where the inputs and outputs are PBR maps, and the intermediate

step that enhances details involves generation of an image.

Material upscaling. Gauthier et al. [2024] consider a subset of

detail enhancement, focusing on increasing the resolution of PBR

material textures by inverse rendering upscaled images. However,

they operate on flat-geometry and are therefore unable to synthesize

detail in the context of the object geometry; this is one of our goals.

Video diffusion models. Video diffusion models [Blattmann et al.

2023; Hong et al. 2023; Yang et al. 2024] generate (view-consistent)

video from text and image conditioning. Notably, SV3D [Voleti

et al. 2024] adapts image-to-video diffusion model for novel multi-

view synthesis and 3D generation. However, these models come

at significant computational cost, and the generated frames are

typically not as detailed as text-to-image models.

3 BACKGROUND

Diffusion models. Denoising diffusion leverages a bidirectional

process where the forward pass gradually corrupts training data

by iteratively adding Gaussian noise until the data becomes pure

noise. The reverse process then learns to denoise the corrupted data

through a neural network, which predicts and removes noise step-

by-step. We use a latent space diffusion model [Rombach et al. 2022],

which extracts the latent space using a variational autoencoder and

performs the denoising steps with a U-Net architecture operating

at different scales (see Figure 3 in Rombach et al. [2022]).

ControlNet. In order to guide the denoising process, the Control-

Net model [Zhang et al. 2023] implements a dual-network archi-

tecture. The first network—a pretrained diffusion model—is locked

down to perform the usual denoising task and cloned. The clone

network is connected to the locked network using zero-initialized

convolution layers, and enables precise spatial conditioning of the

pretrained denoiser using images.

Attention. The attention operation [Vaswani et al. 2017] has been

incorporated to diffusion models to capture relationships between

different activations in the denoising process. The operation takes

its inputs and embeds them in three learned linear spaces, referring

to them as key, query, and value. Denoting the matrices of these

embeddings Q, K, and V, respectively the attention formula

Attention(Q,K,V) = softmax

(
QK⊤√︁
𝑑𝑘

)
V, (1)

provides a mechanism for capturing the similarity between queries

and keys (where 𝑑𝑘 is the dimensionality of the key embedding).

A typical U-Net diffusion model features two types of attention:

cross-attention layers that guide the denoising of image regions us-

ing a given text-prompt, and self-attention layers that allow regions

within the image to influence each other. In the self-attention mod-

ule, the QK⊤
product forms a large attention score matrix, where

entry [𝑖, 𝑗] describes how strongly region 𝑖 attends to region 𝑗 .

4 METHOD

Ourmethod (see Figure 2) comprises three stages: forward rendering,

detail generation, and inverse rendering discussed below. We then

present our three technical contributions in Sections 4.1 to 4.3.

Forward rendering. We begin with a user-provided asset compris-

ing of known geometry and the material to be enhanced, as well as a

3D scene providing context for the asset. We render the scene from

a small number (9 to 16) of views in an orbit around the asset. The

output of the renderer consists of the renderings as well as auxiliary

buffers of surface normals, which serve to condition the diffusion

model during the next stage.
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Detail generation. The renderings from the previous stage are

passed to an off-the-shelf diffusion model to add detail to the ren-

derings, conditioned on a text prompt and the auxiliary buffers.

Although the rendered views could be enhanced individually, we

find that mutual view consistency is improved if we use multi-view
visual prompting [Deng et al. 2024], in which we concatenate all

views into a grid (e.g. 3×3 or 4×4) and enhance them simultaneously.

While multi-view prompting improves consistency across the

views at a coarse scale, there remains enough variation in fine-scale

detail between views to make reconstruction of highly detailed

materials challenging. To remedy this, we propose twomodifications

to the diffusion model: using view-correlated input noise that is

anchored in 3D space (Section 4.2) and biasing the attention layers

with pixel-to-pixel correspondence information (Section 4.3).

Inverse rendering. We finally propagate the detail generated by

the diffusion model back to the original material of the 3D asset,

leveraging a differentiable renderer to minimize the difference be-

tween the enhanced views and the rendered material in a stochastic

gradient optimization. In all our results, we optimize the spatially-

varying albedo, normal, and roughness textures of a typical PBR

material [Burley 2012], but any differentiable material definition

can be used in principle. We initialize the optimization state with

the original textures; this improves the convergence likelihood.

4.1 Structure-preserving detail enhancement

To enhance the rendered views while preserving the character of the

input material, we follow the approach of Meng et al. [2022] and add

a user-controlled amount of noise to the rendered views to get the

initial state for diffusion. This is not enough, however, to preserve

the original material and geometry. Hence, we additionally condition

the diffusion model with two publicly available ControlNets [Zhang

et al. 2023]: ControlNet tile, trained to do super-resolution, which

we repurpose to respect the input view while enhancing details, and

ControlNet normal that helps preserve lighting and curvature details
using our auxiliary normal buffer as input.

Together with our other modifications (Sec. 4.2 and 4.3) we find

this to be effective at achieving consistency with the original ma-

terial and across views, while avoiding expensive training of task-

specific ControlNets as used in prior work [Deng et al. 2024].

4.2 View-correlated noise prior

Although the relationship between the initial noise input and the

image output in diffusion is highly non-linear, the two are correlated.

This has previously been exploited for temporal consistency by

warping noise by a motion field, and we take a similar approach.

Because diffusion models are highly sensitive to the noise statistics,

the noise we produce must be uncorrelated within each view and

have uniform variance, or we risk significant artifacts.

Based on Chang et al. [2024], we propose a simple method to

correlate the initial noise of the diffusion model across views while

preserving its statistics. In contrast to their application, we deal with

a sparse set of views that do not undergo smooth motion. It would

be challenging to warp an initial noise from a reference view due

to the significant amount of disocclusion between views. Instead,

we exploit the known geometry of the asset and anchor a reference

noise field in the UV space of the asset.

For each view, we then project the noise from UV space (we use

1024 × 1024 noise textures) into image space and use this as the

initial state for diffusion. Compared to the analytic integration of

Chang et al. [2024], we use a simpler but effective supersampling
approach. We subdivide each pixel into a grid of subpixels (4 × 4 in

our implementation) and project the corners of each subpixel into

the UV space of the object:

Subdivided

pixel

UV space zoom-in

𝐴𝑖 :

We then sample the noise field at the center of each projected sub-

pixel, and compute an area-weighted average of the sampled noise

values:

∑
𝑖 𝑓𝑖 · 𝐴𝑖 , where 𝐴𝑖 is the area of each projected subpixel 𝑖 ,

and 𝑓𝑖 its noise value. Neighboring pixels don’t overlap and gener-

ally average distinct sets of noise texels, and the resulting noise is

independent within each view.

The variance of the projected noise is highly non-uniform, de-

pending on the projected area of each pixel. To correct this, we could

normalize the noise field by an estimate of its variance:

√︁∑
𝑖 𝐴

2

𝑖
.

However, because multiple subpixels may map to the same noise

texel, we need to additionally account for the covariance between

subpixels. We estimate this withCov𝑖 = max(𝐴
texel

/𝐴𝑖−1, 0) where
𝐴
texel

= 1024
−2

is the area of a noise texel. Intuitively, this counts

how many times a distinct noise value is overcounted on aver-

age. The final normalization factor is then

√︃∑
𝑖 𝐴

2

𝑖
(1 + Cov𝑖 ). This

matches the variance of projected- and reference noise.

In the case of extreme magnification of the noise texture, individ-

ual noise texels may project to multiple pixels and correlate noise

within the image. This is rare and usually caused by missing or

degenerate UVs, but it can negatively impact the quality of diffusion.

As a safeguard, we smoothly blend the projected noise value with

independent white noise when the pixel area in UV space,

∑
𝑖 𝐴𝑖 ,

approaches the area of a noise texel.

4.3 Pixel-correspondence attention bias

The second technique for improving the multi-view consistency

amounts to biasing the self-attention mechanism of the diffusion

model according to a reprojection prior.

As described in Section 3, the self-attention modules allow image

regions to influence each other. We refer to these regions as latent
pixels to emphasize that they map to pixels in the input/output

image. The QK⊤
product in the self-attention module forms a large

𝑁 × 𝑁 score matrix where entry [𝑖 ∈ 𝑄, 𝑗 ∈ 𝐾] describes how
strongly latent pixel 𝑖 attends to latent pixel 𝑗 ; 𝑁 is the total number

of latent pixels.

Our goal is to increase the attention scores between latent pixels in

different views that observe the same surface patch. This will increase
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Latent pixel correspondences Unmodified attention scores, Eq. (1) Biased attention scores, Eq. (2)

Fig. 3. Left: An example latent pixel (green) attends to corresponding image regions in other views (red). Middle: One row of the attention score matrix related

to that green pixel is rearranged into a false-color image showing how much it attends to all other pixels in one stage of the diffusion model. Right: We bias the

matrix elements in columns that correspond to the identified red regions to promote attention—and hence consistency—between these latents. Scores are

visualized after the softmax in Eq. (1) and (2) and gamma-mapped for clarity. See the supplementary document for an extended version with 3 × 3 views.

Initial asset

� -visual fidelity 𝑤 parameter view consistency

0.0 0.6 1.2 1.8 2.4 3.0

V
i
e
w
1
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i
e
w
2
,
+4

0
◦

Fig. 4. The bias parameter 𝑤 trades between visual fidelity (left insets) and multi-view consistency (right insets). The first column shows the initial asset in

two views that condition the diffusion model. The white shapes outline a UV region, which we analyze in the insets to illustrate the impact of the 𝑤 parameter

on generated visuals. Values between 1.2 and 1.8 strike a good balance in this particular scene.

the chance that these latent pixels will denoise to consistent visuals

in the resulting images. Conceptually, we construct an 𝑁 × 𝑁 bias
matrix B, where any positive value B[𝑖, 𝑗] will boost the attention
of pixel 𝑖 to pixel 𝑗 .

We determine the values of B as follows. For each pair of pixels

𝑖 and 𝑗 (where 𝑖 ≠ 𝑗 ) in the 3 × 3 latent image grid, we cast a ray

through the center of latent pixel 𝑗 into the 3D scene, finding the

first hit point p. We then project p onto the image plane containing

pixel 𝑖 and check that p and the projection q are mutually visible.

pq

Latent pixel 𝑖
Latent pixel 𝑗

B[𝑖, 𝑗0]=𝑤

B[𝑖, 𝑗1]=0

I

If the projection q is within a neighborhood I of pixel 𝑖 , we set

the value in the bias matrix to a user-defined constant: B[𝑖, 𝑗] = 𝑤 .

The matrix is used to alter the attention operation as:

Attention(Q,K,V) = softmax

(
QK⊤ + B√︁

𝑑𝑘

)
V. (2)

In practice, constructing the full 𝑁 × 𝑁 matrix is often prohibitive,

and the bias term has to be evaluated on the fly (see Sec. 5).

The U-Net applies self-attention at multiple scales, and we adjust

the size of neighbordhood I (9
2, 52, 32, 12 for layers 1-4, respec-

tively) to map to the same size patch in the original image. Figure 3

visualizes exemplary attention scores before and after adding the

bias for a single specific surface point. The increment𝑤 is a user-

defined constant analysed in Figure 4. Increasing𝑤 improves view

consistency but eventually generates less compelling appearance as

the diffusion starts to lose its global view of the image.

5 IMPLEMENTATION

We implemented our system in PyTorch [Paszke et al. 2019] using

publicly available models: the tile [Liylasviel 2025b] and normal [Liy-
lasviel 2025a] variants of ControlNet (for color and normal inputs

respectively) and the corresponding Hugging Face implementa-

tion [Wolf et al. 2020] of Stable Diffusion 1.5. We combine the two

ControlNets by summing up their outputs
1
.

We use Mitsuba 3 [Jakob et al. 2022] for GPU accelerated (differ-

entiable) rendering. During inverse rendering, we apply a tonemap-

ping operator [Reinhard et al. 2002] to the high-dynamic range

renderings before comparing them with the (low-dynamic range)

1
https://huggingface.co/docs/diffusers/en/using-diffusers/controlnet#multicontrolnet
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Table 1. Runtime on NVIDIA RTX 5880 and memory usage for different

numbers of conditioning views and resolutions. Implementing our attention

biasing with xFormers (xF) instead of FlexAttention (FA) runs roughly 2×
faster, but exceeds available memory with 9 and more views at 1024 × 1024.

4 views 9 views 16 views

512
2

1024
2

512
2

1024
2

512
2

1024
2

FA

Runtime (s) 17 187 67 923 187 2816

Peak memory (GB) 6.2 9.2 7.6 15.2 9.7 20.4

xF

Runtime (s) 8 102 34 - 100 -

Peak memory (GB) 6.9 33.2 13.8 >45 33.2 >45

diffusion-generated target images using a relative L2 loss. It is im-

portant not to clip high values in order to preserve smooth specular

highlights and avoid zero-valued gradients during backpropagation.

The ControlNet occasionally fails to preserve the exact silhouette

of the rendered 3D geometry causing some background pixels to

“bleed into the object” during the diffusion. We therefore stop gra-

dient propagation for pixels that are within a fixed distance of the

(precomputed) object boundary and downscale the loss at grazing

incident angles based on a cosine-factor. Masked points still receive

coverage from other views and are not removed from optimization.

Memory considerations and scalability. Our attention biasing can

easily exhaust available GPU memory when operating on large im-

ages.While the pixel-to-pixel correspondences can easily be precom-

puted for a given asset (e.g. by storing matching pixel coordinates

between each pair of views) we cannot afford to explicitly store the

resulting 𝑁 ×𝑁 bias matrix in memory. This limits our choice of the

attention framework. From the ones we tested [Dao 2024; Dao et al.

2022; Lefaudeux et al. 2022; Liu et al. 2021; Rabe and Staats 2021]

only the recent FlexAttention [Dong et al. 2024] allowed us to scale

to 16 views at resolution 1024
2
as it can apply attention biases on

the fly. Table 1 illustrates how memory consumption and runtime

performance scale with varying number of views and resolutions.

6 EXPERIMENTS

Comparisons. Our goal of enhancing given 3D assets with existing

materials is distinct from recent work leveraging image models for

view-consistent editing and generation. We first evaluate whether

existing works can address our problem. Figure 5 justifies our tech-

nique by comparing it to related methods applied in our problem

setting. The top half shows (multi-view) image generators, includ-

ing SPAD [Kant et al. 2024], Diffusion Handles [Pandey et al. 2023],

and RGB↔X [Zeng et al. 2024]. Because SPAD and Diffusion Han-

dles are not designed to work with the given 3D geometry of an

input asset, they struggle to render the asset accurately from multi-

ple viewpoints. On the other hand, RGB↔X takes scene intrinsics

as input, but it is not equipped to ensure multi-view consistency.

We evaluated RGB↔X in the sequence RGB→X→RGB, where our

initial renderings are inputs and the edited renderings are outputs.

The bottom part of Figure 5 compares our approach to mate-

rial/texture generators given 3D geometry includingDreamMat [Zhang

et al. 2024a], Paint-it [Youwang et al. 2024], and TexPainter [Zhang

et al. 2024b]. While they focus on material generation from scratch,

our primary goal is to enhance existing materials. Hence our re-

sult is more faithful to the initial asset provided as input (shown in

Figure 4), while also providing more realistic fine grained details.

In principle, these approaches could be altered to enhance existing

materials, e.g., by initializing their optimizable parameters with a

given input textures. However, modifying prior works to suit our

application would not improve their native performance.

We provide more examples and the corresponding recovered

material attributes in the supplementary document.

Visual results. Figure 10 shows results of our complete pipeline,

starting with basic assets, all the way to the recovered material pa-

rameters and the corresponding renderings. The Air Conditioner

result in particular highlights the advantage of using a diffusion

model trained on natural images. The rusting of the blades is distinct

from that of the enclosure itself, which aligns with the expectation

these components would age differently. In Figure 6 we show how

classifier free guidance [Ho and Salimans 2022] enables the user to

control the magnitude of the detail enhancements. We show further

examples in the supplementary document and video.

Ablation. We validate our contributions and algorithmic choices

to achieve view consistency of a pure 2D generative diffusion model

by performing an ablation study presented in Figure 8. We modify

the appearance and detail of the 3D assets Briefcase and Greek

Vase: Pure ControlNet tile is able to modify the appearance of the

object with respect to the initial material, but fails to achieve view

consistency. Using view-correlated noise (Section. 4.2) we enhance

the detail presence between different camera views, but some of

the detail remains misaligned. Finally, our full model that biases

attention (Section. 4.3) further increases the consistency.

View consistency and inverse rendering. Intuitively, view consis-

tency between produced outputs is necessary to successfully recon-

struct the material maps through inverse rendering. When different

views of the same surface disagree and present different details, the

inverse rendering process produces superimposed results or fails to

converge. We present this effect in Figure 9.

7 LIMITATIONS AND FUTURE WORK

Additional consistency improvements. Although our contributions

improve multi-view consistency, occasional deviations between

views still occur at small scale. The inverse rendering typically re-

solves them by superimposing the conflicting visuals in the material

maps. The final representation is view consistent, by design, but

high-frequency view-dependent effects (e.g., mirror reflections) may

end up baked in the albedo texture; see Figure 7. Since multi-view

consistency of diffusion generators is an actively sought property,

we believe future work will alleviate this either in a data-driven fash-

ion, e.g., by employing multi-step optimization and video models, or

by imposing additional geometric priors, such as identifying pixel

correspondences using manifold walks on specular surfaces [Jakob

and Marschner 2012].

Controlling the diffusion model. We currently expose only a text

prompt as the control over the generated detail. Future work could

explore more fine-grained user control, such as CLIP priors [Face

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.
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Fig. 5. Prior work comparison on Kettle with the prompt “Rusty scratched
kettle”. Image generators such as SPAD and Diffusion Handles are not

designed to reproduce an input gometry. RGB↔X takes scene intrinsics

as input, but is not equipped with multi-view consistency. Our problem is

more related to material generation techniques. DreamMat and Paint-it

use variants of SDS, which tends to output blurrier results. TexPainter

does not allow for view-dependent effects. These techniques generate the

output material from scratch while we enhance an input material. Both our

approach and TexPainter do multi-view generation + reconstruction, shown

in both segments above.

2025; Ramesh et al. 2022] or manipulations using texture exem-

plars [Guerrero-Viu et al. 2024]. The recently published Stable Dif-

fusion 3.x [Esser et al. 2024; Stability AI 2025] supports more so-

phisticated text encoders and ControlNets, and swapping them in

place of our current diffusion model provides a near-term avenue

for better control. Importantly, artists still retain full editability of

the material produced by our tool using traditional workflows.

Enhancing macro geometry. We focused on visual enhancements

that can be captured using texturemaps without attempting to refine

the input macro geometry. While inverse rendering is in principle

capable of updating the mesh, we leave this for future work.

Manual hyperparameter tuning. The attention bias𝑤 is currently

a manually tuned hyperparameter. Although the range of reasonable

values is limited ([0 − 3.5] in our experiments), and𝑤 can be tuned

quickly on low-resolution images, a parameter-free biasing would

make the technique more practical.

8 CONCLUSION

We presented a method for enhancing the detail of a classically

authored material using a diffusion model. Our method renders the

provided material from multiple views, adds details to the render-

ings using a diffusion model, and then backpropagates the changes

to the material using inverse rendering. Inverse rendering requires

detail to be consistent across views, and we achieve this with two

technical contributions: noise correlation by projecting from a refer-

ence noise anchored in the UV space, and attention biasing using the

known geometry of the object. This requires no new datasets or ex-

pensive retraining and is largely built from off-the-shelf, pre-trained

components.

The resulting method serves the important use case of human-
in-the-loop authoring: Rather than entirely replacing the artist and

generating materials from scratch, we allow the artist to maintain

creative control using traditional workflows, while reducing the time

spent on tedious detailing of assets—analogous to “auto-complete”

for material detail. Because the input and output of our method

are traditional materials, our method can be used at any stage in

the authoring process, and the produced enhacements arbitrarily

post-processed, blended, and combined. We believe our work builds

a solid foundation for future practical tools that will further improve

the robustness and controllability of the generative process.
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Conditioning images Baseline: Multi-view prompting + ControlNet tile + View-correlated noise + Attention bias (full model)
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Fig. 8. Impact of individual components of our method, added one-by-one to the baseline. The ControlNet tile provides conditioning on initial images. The

view-correlated noise and biased attention improve multi-view consistency. The supplementary includes a variant where images are warped to a single view.

(a) ControlNet tile & normal (b) + Multi-view visual prompting (c) + View-correlated noise & attention bias
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Fig. 9. Ablation of our model, first without the multi-view visual prompting (i.e., assembling the conditioning images into a grid) [Deng et al. 2024] (a), with it

(b), and finally with our two techniques for improving multi-view consistency. The supplementary includes a variant where images are warped to a single view.
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Air Conditioner, prompt: “Overused, rusty, old air-conditioning unit”
(a) Conditioning renders (b) Diffusion outputs (c) Reconstructed material

(d) Initial albedo (e) Reconstructed albedo (f) Initial normal (g) Reconstructed normal (h) Initial roughness (i) Reconstructed roughness

Statue, prompt “Mossy stone statue”
(a) Conditioning renders (b) Diffusion outputs (c) Reconstructed material

(d) Initial albedo (e) Reconstructed albedo (f) Initial normal (g) Reconstructed normal (h) Initial roughness (i) Reconstructed roughness

Fig. 10. We use renderings of the original asset (two pairs of two adjacent views are shown in (a)) to condition the diffusion model to produce images with

enhanced appearance (b), which is then backpropagated into the original material definition. In (c), we show the resulting asset on four frames from a turntable

animation (we picked frames that correspond to the conditioning views); see the accompanying video for the full animation. Columns (d) to (i) show albedo,

normal, and roughness textures of the initial and reconstructed material.
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A ADDITIONAL DISCUSSION

A.1 Relation to SDS-based methods

Score distillation sampling (SDS) offers a way to deal with multi-

view consistency by performing alternating steps of diffusion and

inverse rendering in an iterative loop. In contrast, our technique

provides view consistency while running the diffusion denoiser only

once, and inverse rendering occurs after the generation is complete.

This makes reconstruction faster than iterative SDS techniques.

Also, SDS backpropagates multiple diffused solutions to the 3D

representation, whereas our method reconstructs materials from on

one sharp target image.

Our contributions for view-consistency (attention biasing, view-

correlated noise) are orthogonal to SDS and some applications may

benefit from a combined approach. We leave this for future work.

A.2 Choice of viewpoints

All experiments in the paper use roughly equidistant views spaced

evenly around the object.

In cases where none of the views observe a particular part of the

object, the input material in the unseen area remains unchanged.

This is a limitation that we share with all prior works that require

rendering 2D images of a 3D scene.
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None of the ControlNets we use make assumptions on the posi-

tioning of the views. Our simple view placement could be replaced

by an adaptive strategy, e.g., to observe otherwise occluded regions

or zoom in on specific parts. In the latter case, the size of the pixel

neighborhood during attention biasing (Section 4.3 of the main pa-

per) should be adjusted for views that have highly non-uniform area

sampling. E.g., in case the same surface region is observed from

different views with different distances or zoom levels.

A.3 Memory bottlenecks

Section 5 in the main paper discusses a memory-efficient implemen-

tation of our attention biasing approach. Another memory bottle-

neck arises during themain diffusion process, where high-resolution

multi-view grids are passed through the variational autoencoder

used for mapping between image and (spatially-downsampled) la-

tent space. For this conversion we found it necessary to split the

grid back into tiles consisting of the individual views. That said,

the latent sampling inside the autoencoder and the main diffusion

and denoising processes can then internally operate on the full

resolution (re)concatenated grids.

A.4 Inverse rendering details

We use Mitsuba’s differentiable path tracer built on Path Replay

Backpropagation [Vicini et al. 2021]. Both the forward and back-

wards passes are set to 128 SPP. We allow up to 3 bounces of light.

The inverse rendering inputs are the generated diffusion images

(used as the target images), and the initial scene parameters (with

the initial material textures and fixed geometry and lighting).

The optimized material parameters are albedo, roughness, and

normal textures with respective Adam learning rates 0.001, 0.001,

and 0.0001 in most cases. The latter value is smaller to avoid strongly

tilted normals that otherwise produce black artifacts in the render-

ings at grazing angles.

A.5 Robustness of inverse rendering

We mitigate the ill-posed nature of lighting and material decompo-

sition by conditioning the diffusion on renderings with the initial

material and known illumination. We observe that the generated

images preserve the lighting of the conditioning rendering. With

known geometry and lighting we are left with updating only the

input material textures. This proved sufficient in most of our ex-

periments, but a failure case is shown in Section 7 of the main

paper.

B ADDITIONAL EXPERIMENTS

B.1 Comparisons

Figures 11–15 show additional comparisons to related work, similar

to Figure 5 in the main paper. Figure 16 shows the corresponding

decomposition into the individual material texture maps that each

method recovers. Overall, our results are more detailed and more

realistic. Please zoom-in for a better view of the details.

RGB↔X is not designed to produce multi-view consistent images,

but the editing also leads to unrealistic appearance (Kettle) or

results that do not adhere to the prompt (Statue, David Bust).

In case of TexPainter, the multi-view generated images are incon-

sistent from view to view (see the side of Briefcase, the back of

David Bust, the body of Kettle, bottom front of Statue). This

leads to blurry reconstructed textures in Briefcase and Kettle,

and superimposed effects in Statue.

DreamMat and Paint-it both use variants of SDS, which tend to

generate blurry textures due to the inconsistencies of the diffusion

model solutions from iteration to iteration. Instead, our approach

provides improved multi-view consistency during generation and

performs inverse rendering on one sharp target image.

B.2 Visual results

Figures 17–19 presents additional results of our complete pipeline

starting from basic assets all the way to the recovered material

parameters, as in Figure 10 in the main paper.

Figure 20 shows an extended version of Figure 3 in the main

paper, and visualizes exemplary attention scores before and after

adding the bias for a single specific surface point.

Figures 21 and 22 are extended versions of Figure 6 from the main

paper and demonstrate the full set of user-controlled parameters and

their impact on the generated visuals. The classifier-free guidance
parameter controls the amount of adherence to the prompt; the

ControlNet tile scale and the added noise parameters control how

much the generated material is allowed to deviate from the input

views, and trades off the amount of detail vs preservation of the

original design intent.

B.3 Warped images

For the results that demonstrate multi-view consistency (Figures 8

and 9 in the main paper), we provide another version with warped

images (Figures 23 and 24, respectively). Here, images from one

viewpoint are warped to match the other viewpoint for easier visual

comparison. This is possible using the known camera parameters

and geometry.
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Fig. 11. Prior work comparison on Briefcase. All approaches share the same prompt (as reported in the main results) and the same input mesh.
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Fig. 12. Prior work comparison on Statue. All approaches share the same prompt (as reported in the main results) and the same input mesh.
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Fig. 13. Prior work comparison on Kettle. All approaches share the same prompt (as reported in the main results) and the same input mesh.
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Fig. 14. Prior work comparison onWooden Box. All approaches share the same prompt (as reported in the main results) and the same input mesh.
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Fig. 15. Prior work comparison on David Bust. All approaches share the same prompt (as reported in the main results) and the same input mesh.
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Fig. 16. Material decomposition results of prior works and our method. For prior work we used their default settings; each method uses its own renderer with

different inverse rendering parameters, coordinate systems, and material conventions.
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Briefcase, prompt: “Old, overused, weathered, scratched, leather briefcase”
(a) Conditioning renders (b) Diffusion outputs (c) Reconstructed material

View 0 View 1 View 0 View 1 View 0 View 1

View 4 View 5 View 4 View 5 View 4 View 5

(d) Initial albedo (e) Reconstructed albedo (f) Initial normal (g) Reconstructed normal (h) Initial roughness (i) Reconstructed roughness

David Bust, prompt “Old, cracked statue of David”
(a) Conditioning renders (b) Diffusion outputs (c) Reconstructed material

View 0 View 1 View 0 View 1 View 0 View 1

View 4 View 5 View 4 View 5 View 4 View 5

(d) Initial albedo (e) Reconstructed albedo (f) Initial normal (g) Reconstructed normal (h) Initial roughness (i) Reconstructed roughness

Fig. 17. We use renderings of the original asset (two pairs of two adjacent views are shown in (a)) to condition the diffusion model to produce images with

enhanced appearance (b), which is then backpropagated into the original material definition. In (c), we show the resulting asset on four frames from a turntable

animation (we picked frames that correspond to the conditioning views); see the accompanying video for the full animation. Columns (d) to (i) show albedo,

normal, and roughness textures of the initial and reconstructed material.
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Pottery Vases, prompt: “Weathered pottery vases”
(a) Conditioning renders (b) Diffusion outputs (c) Reconstructed material

View 0 View 2 View 0 View 2 View 0 View 2

View 4 View 12 View 10 View 12 View 10 View 12

(d) Initial albedo (e) Reconstructed albedo (f) Initial normal (g) Reconstructed normal (h) Initial roughness (i) Reconstructed roughness

Cooking Pot, prompt “rusty scratched old cooking pot”
(a) Conditioning renders (b) Diffusion outputs (c) Reconstructed material

View 0 View 1 View 0 View 1 View 0 View 1

View 4 View 8 View 7 View 8 View 7 View 8

(d) Initial albedo (e) Reconstructed albedo (f) Initial normal (g) Reconstructed normal (h) Initial roughness (i) Reconstructed roughness

Fig. 18. We use renderings of the original asset (two pairs of two adjacent views are shown in (a)) to condition the diffusion model to produce images with

enhanced appearance (b), which is then backpropagated into the original material definition. In (c), we show the resulting asset on four frames from a turntable

animation (we picked frames that correspond to the conditioning views); see the accompanying video for the full animation. Columns (d) to (i) show albedo,

normal, and roughness textures of the initial and reconstructed material.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



Generative Detail Enhancement for Physically Based Materials • 21

Wooden Box, prompt: “Aged, old, weathered wooden box”
(a) Conditioning renders (b) Diffusion outputs (c) Reconstructed material

View 1 View 2 View 1 View 2 View 1 View 2

View 4 View 15 View 14 View 15 View 14 View 15

(d) Initial albedo (e) Reconstructed albedo (f) Initial normal (g) Reconstructed normal (h) Initial roughness (i) Reconstructed roughness

Greek Vase, prompt “A highly detailed ancient Greek vase, decorated with intricate mythological patterns and scenes of warriors, partially cracked and chipped
from age, with areas of fading paint and earthy dust coating its surface. The vase is surrounded by a soft warm light. The style is realistic and cinematic,

emphasizing texture and detail, with a focus on the cracks and aged patina on the vase.”
(a) Conditioning renders (b) Diffusion outputs (c) Reconstructed material

View 4 View 5 View 4 View 5 View 4 View 5

View 4 View 11 View 10 View 11 View 10 View 11

(d) Initial albedo (e) Reconstructed albedo (f) Initial normal (g) Reconstructed normal (h) Initial roughness (i) Reconstructed roughness

Fig. 19. We use renderings of the original asset (two pairs of two adjacent views are shown in (a)) to condition the diffusion model to produce images with

enhanced appearance (b), which is then backpropagated into the original material definition. In (c), we show the resulting asset on four frames from a turntable

animation (we picked frames that correspond to the conditioning views); see the accompanying video for the full animation. Columns (d) to (i) show albedo,

normal, and roughness textures of the initial and reconstructed material.
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Unmodified attention scores Latent pixel correspondences Biased attention scores

Fig. 20. An extended version of Figure 3 from the main paper. Left: An example latent pixel (green) attends to corresponding image regions in other views (red).

Middle: One row of the attention score matrix related to that green pixel is rearranged into a false-color image showing how much it attends to all other pixels

in one stage of the diffusion model. Right: We bias the matrix elements in columns that correspond to the identified red regions to promote attention—and

hence consistency—between these latents. Scores are visualized after the softmax in Eq. (1) and (2) and gamma-mapped for clarity.
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Fig. 21. Expanded version of Figure 6 from the main paper onWooden Box. Apart from the classifier-free guidance parameter (top), the underlying diffusion

models of our system expose two further parameters that can be tweaked by users. Both the strength at which the ControlNet tile (middle) and the input noise
(bottom) are applied allow tweaking how much the generated material details will deviate from the base material. Numbers highlighted in bold indicate

parameter ranges we use throughout the results in the paper.
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Fig. 22. Another example of Figure 21 on Statue. Apart from the classifier-free guidance parameter (top), the underlying diffusion models of our system

expose two further parameters that can be tweaked by users. Both the strength at which the ControlNet tile (middle) and the input noise (bottom) are applied

allow tweaking how much the generated material details will deviate from the base material. Numbers highlighted in bold indicate parameter ranges we use

throughout the results in the paper.
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Conditioning images Baseline: Multi-view prompting + ControlNet tile + View-correlated noise + Attention bias (full model)
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Fig. 23. Another version of Figure 8 from the main paper. Here, images of the right view are warped to match the viewpoint in the left view for easier visual

comparison. We also added the Kettle scene.
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(a) ControlNet tile & normal (b) + Multi-view visual prompting (c) + View-correlated noise & attention bias
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Fig. 24. Another version of Figure 9 from the main paper. Here, images of view 2 warped to match the viewpoint of view 1 for easier visual comparison.
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