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Abstract

Many-light rendering has proven to be an efficient and versatile solution for generating synthetic
images of virtual scenes. The concept of representing all lighting in the scene using a set of
carefully chosen virtual point lights has, however, its specific pitfalls. In particular, contracting
all radiant energy into a finite set of infinitesimal emitters leads to singularities, which make
high-quality results hard to obtain. Most existing techniques thus simply accept visual artifacts
or some form of a systematic error. We present several approaches based on virtual lights that
aim at capturing the light transport without compromising quality, and while preserving the
elegance and efficiency of many-light rendering.

We first analyze a crucial component of high-quality rendering with virtual point lights, the so-
called bias compensation that counteracts the systematic error. By reformulating the integration
scheme, we obtain two numerically efficient techniques; one tailored specifically for interactive,
high-quality lighting on surfaces, and one for handling scenes with participating media. We then
continue investigating the more general problem of solving the light transport in the presence of
participating media and present two lighting primitives for many-light rendering: the virtual ray
light and the virtual beam light. Representing scattered light with the first primitive significantly
reduces the degree of the singularity in the integrand—the major deficiency of rendering with
virtual point lights—thereby minimizing the artifacts and allowing for more efficient unbiased
computation. The second primitive then avoids the singularity completely by redistributing the
emitted energy over the volume of the beam. We demonstrate that these two lighting primi-
tives enable faster convergence and provide better temporal stability than traditional many-light
methods based on virtual point lights.

We also address the main bottleneck of (not only) many-light rendering—the visibility testing—
and present a novel accelerating structure for fast, approximate ray tracing. Our rasterized bound-
ing volume hierarchies decouple the accelerator from the input geometry by representing the ge-
ometry as a collection of hierarchically organized height fields. We show that in addition to fast
ray tracing, the hierarchy has a low memory footprint, provides inherent surface parametriza-
tion, and natively supports level-of-detail rendering. We demonstrate its advantages in various
applications.
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Abstrakt

Der sogenannte Many-light Rendering Ansatz hat sich als effiziente und vielseitige Losung fiir
die physikalisch-basierte Berechnung des Lichttransports fiir die Erstellung synthetischer Bilder
virtueller Szenen bewidhrt. Dieses Konzept, bei dem die gesamte Beleuchtung in der Szene
durch eine Menge von virtuellen Punktlichtquellen approximiert wird, weist jedoch besondere
Probleme auf, die bei der Bilderzeugung bertiicksichtigt werden miissen. Insbesondere fiihrt
das Konzentrieren der gesamten Strahlungsenergie auf eine endlichen Menge infinitesimaler
Quellen zu Singularititen, die als storende Artefakte in den erzeugten Bildern sichtbar sind. Die
meisten der existierenden Verfahren aus dieser Klasse von Ansédtzen nehmen diese Artefakte in
Kauf, oder vermeiden sie durch Begrenzung der Singularitdten, was jedoch zu systematischen
Fehlern (engl. bias) fithrt. In dieser Arbeit werden mehrere auf virtuellen Punktlichtquellen
aufbauende Ansitze vorgestellt, deren Ziel es ist, den Lichttransport in einer virtuellen Szene
ohne sichtbare Qualitdtsverluste bei der Darstellung zu erfassen und dabei die Eleganz und
Effizienz der Many-light Rendering-Methoden beizubehalten.

Zunichst wird der Ansatz der sogenannten Bias Compensation analysiert, der eine Moglichkeit
darstellt dem systematischen Fehler entgegenzuwirken und eine wichtige Komponente fiir hoch-
qualitatives Rendering ist. Eine Umformulierung des Integrationsschemas fiihrt zu zwei nu-
merisch effizienten Verfahren, wobei sich eines auf interaktive, qualitativ hochwertige Beleuch-
tung von Oberflichen konzentriert und das andere auf die Berechnung in Szenen mit Flachen
und partizipierenden Medien. Das letztere, allgemeinere Problem des Lichttransports wird in
spdter weiter untersucht und zwei neue Beleuchtungsprimitive fiir das Many-light Rendering
vorgestellt: das Virtual Ray Light und das Virtual Beam Light. Die Darstellung des gestreuten
Lichts in partizipierenden Medien durch das erstgenannte Primitiv, entlang von Strahlen anstatt
an Punkten konzentriert, reduziert den Grad der Singularitdt und somit die Artefakte erhe-
blich. Das zweite Primitiv vermeidet diese Singularitdten vollstindig, indem die abgestrahlte
Energie tiber das Volumen eines Strahlenbiindels (beam) verteilt wird. Es wird gezeigt, dass
diese Berechnung des Lichttransports mit diesen Beleuchtungsprimitiven schneller konvergiert
und zudem zeitlich kohdrentere Resultate als traditionelle Many-light Rendering-Methoden, die
auf virtuellen Punktlichtquellen basieren, liefert.

Letztlich wird auflerdem eine fiir die Performanz der Many-light Rendering-Methoden (und an-
derer Ray Tracing Verfahren) kritische Operation—der Sichtbarkeitstest—untersucht. Es wird
eine neuartige Beschleunigungsstruktur fiir schnelles, approximatives Ray Tracing vorgestellt.
Diese Rasterized Bounding Volume Hierarchies entkoppeln die Reprasentation die Geometrie fiir
Schnittberechnungen von der Eingabegeometrie, indem diese als eine hierarchische Ansamm-
lung von Hohenkarten, also bildbasiert, dargestellt wird. Es wird gezeigt, dass diese Datenstruk-
tur nicht nur schnelles Ray Tracing erlaubt, sondern zudem geringeren Speicherbedarf benotigt,
eine inhdrente Parametrisierung der Oberfldchen, sowie adaptives Detail bietet. Diese Aspekte
werden anhand von unterschiedlichen Anwendungsféllen untersucht.
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Summary

Creating photorealistic images—one of the extensively sought goals of computer graphics—
is an intricate and computationally intensive task. Many applications that demand realistic-
looking images require the propagation of light to be simulated accurately and with emphasis
on physical correctness. In practice, this amounts to not only evaluating integro-differential
equations that govern light transport, but also carrying out the evaluation in a reasonable time
frame. This becomes challenging especially in scenes with participating media, where light
scatters on surfaces as well as inside volumes. In this thesis, we propose several new algorithms
and improvements to existing approaches that aim at efficient rendering of such scenes.

Many-Light Algorithms

We build atop instant radiosity [Keller 1997], an industry-verified algorithm that approximates
costly light transport using a collection of virtual point lights (VPLs); thus it is commonly referred
to as a many-light approach. In a nutshell, many-light algorithms trace a number of photon paths
from light sources, create a VPL whenever a photon is reflected off a surface or scatters inside a
medium (see Figure 1.a), and use these VPLs to illuminate the scene and thus approximate the
expensive multi-bounce light transport. In Chapter 3, we provide a detailed explanation and an
overview of existing many-light techniques; the chapter is based on a state-of-the-art survey:

DacHsBACHER, C., KRIVANEK, J., HASAN, M., ARBREE, A., WALTER, B., and NovAk, J. [2014]. Scalable
realistic rendering with many-light methods. Computer Graphics Forum, 33(1):88-104.

In contrast to other approaches, many-light algorithms allow for coarse approximations in real-
time, accurate rendering in minutes, as well as convergence in the limit. While being extremely
efficient and versatile, many-light rendering suffers from a distinct drawback: the underlying
mathematical formulation is plagued by a singularity. The singularity stems from contracting
all the energy in the scene into a finite number of points, the VPLs. When a VPL illuminates the
scene, its contribution to each receiving point is proportional to the inverse squared distance be-
tween the two points. Nearby surfaces and volumes thus receive significantly more energy then
distant ones, causing the rendered image to suffer from distracting, high intensity “splotches”.

These artifacts can be reduced by creating more VPLs; however, avoiding them completely is
beyond computational resources of any reasonable renderer. Indeed, the only option to truly
remove them is to bound the contribution of each VPL by some user defined maximum. The
more we bound the fewer artifacts we have; however, at the same time we also selectively remove
energy and thereby bias the computation. The energy loss leads to artificial darkening in concave
areas and change in material appearance; and should be thus avoided or compensated for.
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(a) Virtual Point Lights (b) Virtual Ray Lights (c) Virtual Beam Lights
(VPLs) (VRLs) (VBLs)

Figure 1: Many-light algorithms represent multi-bounce illumination with a set of virtual lights. In addition
to improving the existing VPL-based approach (a), we present two new primitives: virtual ray lights (b)
and virtual beam lights (c), that overcome the characteristic problem of point-based many-light techniques
and enable more efficient integration of the light transport.

In Chapter 4, we study Monte Carlo approaches for recovering the lost energy. We note that
existing techniques, despite their need to recover only a small portion of the overall illumination,
often increase the rendering time by orders of magnitude and clutter the otherwise elegant
algorithm. We propose a number of approximations that improve the efficiency and simplify
the bias compensation. We demonstrate that the amount of recovered energy quickly drops
with each additional bounce of light, and thus not more than two or three bounces are usually
required. In the presence of participating media, we also show that assuming local homogeneity
and no occlusion makes the technique GPU-friendly and significantly accelerates rendering of
heterogeneous media. Based on these findings, we propose an approximate bias compensation that
recovers the missing illumination at low costs and thus preserves the efficiency of point-based
many-light algorithms. The technique is tailored for scenes with participating media, and was
published in:

ENGELHARDT, T., NovAK, J., ScaMIDT, T.-W., and DACHSBACHER, C. [2012]. Approximate bias compen-
sation for rendering scenes with heterogeneous participating media. Computer Graphics Forum (Proc.
of Pacific Graphics), 31(7):2145-2154.

We also demonstrate that the illumination that is removed by bounding, and successively re-
covered using the bias compensation, is highly localized. This allows us to reformulate the
rendering algorithm and explicitly split the computation into: bounded light transport between
distant points, which is computed using VPLs; and residual transport between nearby points. In
Chapter 5, we show that the residual transport between surfaces can be estimated at interactive
frame rates using a hierarchical integration in screen space. The technique was presented in:

NovVAK, J., ENGELHARDT, T., and DACHSBACHER, C. [2011a]. Screen-space bias compensation for inter-
active high-quality global illumination with virtual point lights. In Proc. of Symposium on Interactive
3D Graphics and Games, pp. 119-124. ACM.

The major drawback of all bias compensation techniques is that they in some sense reduce
the elegance and simplicity of the original approach. The problem is conceptual: we first re-
move short-distance illumination of VPLs to subsequently recover it using a different integra-
tion scheme. This would not have been necessary if we managed to avoid the problem-causing
singularity in the first place.
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In participating media, scattering of light can be formulated continuously along the directions
of travel. We leverage this observation and replace VPLs with virtual ray lights (VRLs), which
are formed by entire linear segments instead of just vertices of the photon path (see Figure 1.b).
Although computing the incident light due to a ray light is slightly more expensive than with
a point light—we need to integrate the emitted energy along the length of the ray—distributing
the energy along lines provably lowers the degree of the singularity. This in practice reduces
the major weakness of many-light algorithms, i.e. the distracting “splotchy” artifacts, improves
the convergence and temporal stability, and brings down the overall rendering cost. Virtual ray
lights and their efficient sampling are described in detail in Chapter 6 and appeared in:

NovAK, J.,, NowROUZEZAHRALI, D., DACHSBACHER, C., and Jarosz, W. [2012b]. Virtual ray lights for ren-
dering scenes with participating media. ACM Transactions on Graphics (Proc. of SIGGRAPH), 31(4):60:1-
60:11.

In order to avoid the singularity completely, we propose to further inflate the VRL into a virtual
beam light (VBL). Our motivation is to distribute the energy of the infinitesimal ray light over a
cylindrical region with finite thickness (see Figure 1.c). As such, the singularity disappears from
the integrand and we no longer need to bound the light transport and subsequently compensate
for the missing energy. The price to pay is the slight overblurring of illumination; however,
we formulate the rendering algorithm progressively, ensuring that the thickness of each VBL
reduces over time, the blurring diminishes, and the estimation is asymptotically consistent. VBLs
better preserve the appearance of materials and media, do not require special treatment to avoid
artifacts, and represent the current state of the art in rendering scenes with participating media
using virtual lights. The algorithm was originally published in:

NovAK, J.,, NowROUZEZAHRAI, D., DACHSBACHER, C., and Jarosz, W. [2012a]. Progressive virtual beam
lights. Computer Graphics Forum (Proc. of Eurographics Symposium on Rendering), 31(4):1407-1413.

Acceleration of Visibility Computation

One of the common denominators of all rendering algorithms is that they need to resolve the
mutual visibility between points in the scene. Many-light methods are no exception to this; the
visibility is evaluated when tracing photons as well as tested when connecting shading points
to virtual lights. In order to accelerate visibility computation, we present the rasterized bounding
volume hierarchy (RBVH); an acceleration structure for fast, approximate ray tracing.

Our key idea is to represent finely tessellated, detail geometry with a collection of height fields
(i.e. raster images storing elevation data) that are organized into a hierarchy. During construc-
tion, we identify parts that can be well represented with a single, arbitrarily-oriented height field
and rasterize and organize them into a hierarchy of bounding volumes. To trace rays, we traverse
the hierarchy and search for intersections with nearby height fields. In practice, this approach is
faster than using traditional, polygon-based acceleration structures. RBVHs also provide inher-
ent surface parameterization, which enables applications such as real-time on-surface painting
and irradiance caching. Details are presented in Chapter 8, which is based on:

NovAK, J. and DACHSBACHER, C. [2012]. Rasterized bounding volume hierarchies. Computer Graphics
Forum (Proc. of Eurographics), 31(3):403—412.
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Zusammenfassung

Das Erstellen photorealistischer Bilder—seit Anbeginn eines der Ziele der Computergrafik—
ist ein aufwdndiger und rechenintensiver Prozess. Dies ist vor allem der Fall, da hierzu die
Lichtausbreitung in einer virtuellen Szene berechnet werden muss. Viele Anwendungen sind
zudem darauf angewiesen, dass diese Simulation prézise und auf der Basis physikalischer Mod-
elle berechnet wird. In der Praxis kommt hinzu, dass die Auswertung der zugrundeliegen-
den Integro-Differentialgleichungen, die die Licht-Material-Interaktionen beschreiben, innerhalb
vertretbarer Zeitspannen erfolgen muss. Dies stellt insbesondere in Szenen mit partizipierenden
Medien eine Herausforderung dar, da in diesen das Licht nicht nur an Oberfldchen, sondern an
praktisch jeder Stelle im Raum gestreut werden kann. In dieser Arbeit werden mehrere neue
Algorithmen, sowie Verbesserungen existierender Ansétze, vorgestellt, deren Ziel die effiziente
Bildsynthese solcher Szenen ist.

Many-Light-Algorithmen

Der Ursprung des Many-light Rendering Ansatzes ist das instant radiosity-Verfahren [Keller
1997], in dem die Grundidee, den Lichttransport in einer Szene durch eine Ansammlung von
virtuellen Punktlichtquellen (VPL) darzustellen, erstmals vorgestellt wurde. Im Prinzip berech-
nen Many-light-Algorithmen eine verhiltnisméfiig geringe Zahl von Photonen- oder Lichttrans-
portpfaden ausgehend von den Lichtquellen einer Szene und erzeugen eine VPL, wo ein Photon
an einer Oberfldche reflektiert oder in einem Volumen gestreut wird (siehe Abbildung 2.a). Die
direkte Beleuchtung der Szene durch diese VPLs stellt dann eine Approximation des gesamten
Lichttransports dar. Kapitel 3 stellt die zugrundeliegende Theorie dar und bietet einen Uberblick
iiber existierende Many-light Rendering-Verfahren; dieses Kapitel basiert auf einem Artikel:

DacHsBACHER, C., KRIVANEK, J., HASAN, M., ARBREE, A., WALTER, B., and NovAx, J. [2014]. Scalable
realistic rendering with many-light methods. Computer Graphics Forum, 33(1):88-104.

Eine Stiarke des Many-light Ansatzes ist dessen Skalierbarkeit, die es erlaubt eine grobe Néherung
in Echtzeit zu berechnen, vergleichsweise genaue Resultate in wenigen Minuten zu erhalten, und
gleichzeitig Konvergenz gegen die tatsdchliche Losung garantiert. Trotz der hohen Effizienz und
Vielseitigkeit weist der Ansatz einen Nachteil auf: die zugrundeliegende mathematische For-
mulierung enthilt eine Singularitét, die anschaulich durch die Kontraktion des gesamten Licht-
transports einer Szene auf eine endliche Anzahl von Punkten, den VPLs, entsteht. Berechnet man
die Beleuchtung der Szene durch eine VPL, so ist ihr Beitrag zu einem Oberflichenpunkt pro-
portional zur umgekehrten quadratischen Entfernung. Nahegelegene Oberflichen und Punkte
in Volumina erhalten daher deutlich mehr Energie als weiter entfernte, was zu Artefakten in
Form von kleinen, hellen Bildregionen fiihrt.
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Diese Artefakte konnen durch die Erzeugung weiterer VPLs reduziert werden; jedoch ist es na-
hezu unpraktikabel sie dadurch komplett zu vermeiden. Tatsdchlich ist die einzige Moglichkeit
zur Beseitigung dieser Artefakte, den Beitrag jeder VPL zu einem Punkt auf einer Fldche bzw.
im Volumen durch ein benutzerdefiniertes Maximum zu beschrdnken. Je stirker der Beitrag
beschrankt wird, desto weniger Artefakte treten auf; allerdings wird gleichzeitig lokal Energie
entfernt und ein systematischer Fehler (engl. Bias) in die Berechnung eingefiihrt. Dieser En-
ergieverlust fiihrt zu einer Abdunkelung konkaver Flachenstiicke und zu Anderung des Ausse-
hens von Materialien und sollte daher vermieden oder besser ausgeglichen werden (engl. Bias
Compensation).

In Kapitel 4 werden Monte-Carlo-Ansédtze zur Quantifizierung (und somit zur Zurtickgewin-
nung) dieser entfernten Energie untersucht. Es wird gezeigt, dass diese Energiemenge nur einen
geringen Teil der transportierten Energie darstellt, existierende Verfahren aber die Gesamtrechen-
zeit oft um Grofienordnungen erhohen. Es werden eine Reihe von Naherungen vorgestellt, die
die Effizient der Zuriickgewinnung deutlich steigern und deren Berechnung vereinfachen. Ins-
besondere wird ausgenutzt, dass die Menge zuriickgewonnener Energie mit jeder zuséitzlichen
Reflexion exponentiell abnimmt. Auflerdem wird gezeigt, dass in partizipierenden Medien,
durch die Annahmen lokaler Homogenitdt und fehlender Verdeckung, das Verfahren effizient
auf Grafik-Hardware durchfiihrbar ist und die Bildsynthese mit heterogenen Medien signifikant
beschleunigt werden kann. Ausgehend von diesen Resultaten erstellen wir eine Approximate Bias
Compensation vor, die die fehlende Energie mit niedrigen Kosten wiederherstellt und dadurch
die Effizienz der Many-light-Methoden bewahrt. Das Verfahren zielt ist auf Szenen mit partizip-
ierenden Medien aus und wurde in:

ENGELHARDT, T., NoVAK, J., ScaMIDT, T.-W., and DACHSBACHER, C. [2012]. Approximate bias compen-
sation for rendering scenes with heterogeneous participating media. Computer Graphics Forum (Proc.
of Pacific Graphics), 31(7):2145-2154

veroffentlicht.

Ein weiteres Charakteristikum ist, dass die zuriickgewonnene Energie nur in einem rdumlich
sehr beschriankten Bereich nennenswerte Beitrdge liefert. Dies erlaubt es, die Lichttransport-
gleichung umzuformulieren und die Berechnung explizit aufzuteilen: in einen beschriinkten
Lichttransport zwischen weit entfernten Punkten, der mit VPLs berechnet wird, und einem
residualen Lichttransport zwischen benachbarten Punkten. In Kapitel 5 wird gezeigt, dass der
verbleibende Lichttransport zwischen Oberflichen mittels einer hierarchischen Integration im
Bildraum abgeschétzt werden kann und dies Berechnungen in interaktiver Geschwindigkeit er-
moglicht. Dieses Verfahren wurde in:

NovAK, J., ENGELHARDT, T., and DACHSBACHER, C. [2011a]. Screen-space bias compensation for inter-
active high-quality global illumination with virtual point lights. In Proc. of Symposium on Interactive
3D Graphics and Games, pp. 119-124. ACM

vorgestellt.

Trotz dieser Verbesserungen bleibt der wesentlicher Nachteil aller bias compensation-Verfahren,
dass sie in irgendeiner Weise die Eleganz und Einfachheit des urspriinglichen Ansatzes re-
duzieren. Dabei handelt es sich allerdings um ein konzeptionelles Problem: zuerst werden
die Beitrdge von VPLs iiber kurze Entfernungen begrenzt (um Artefakte zu vermeiden), um den
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Abbildung 2: Many-light-Ansétze stellen mehrfach reflektiertes Licht als direkte Beleuchtung durch eine
Menge von virtuellen Lichtquellen dar. Neben Verbesserungen an bestehenden VPL-basierten Ansitzen
(a) werden in dieser Arbeit zwei neue Beleuchtungsprimitive vorgestellt: virtuelle lineare Strahllichter (b)
und Virtuelle Biindeln (c). Diese reduzieren bzw. vermeiden das inhdrente Problem der punktbasierten
Many-Light-Ansitze und fithren zu einer effizienteren Berechnung des Lichttransports.

fehlenden Lichttransport danach mittels eines anderen Integrationsschemas wieder hinzuzufii-
gen. Dies wire nicht notig, wenn die Singularitit, die dieses Problem erzeugt, von vornherein
vermieden werden konnte.

In Kapitel 6 wird gezeigt, dass es in partizipierenden Medien moglich ist, das Konzept von
virtuellen Punktlichtquellen durch lineare Lichtquellen (Virtual Ray Lights, VRLs) zu ersetzen.
Diese stellen die Verbindungsstrecke zweier Interaktionen entlang eines Photonenpfades dar
(siehe Abbildung 2.b). Die Berechnung des einfallenden Lichts von einer VRL ist etwas teurer ist
als von einem Punktlicht, da die abgestrahlte Energie tiber den ganzen Strahl hinweg integriert
werden muss. Dennoch verringert das Verteilen der Energie tiber die ganze Lange des Strahls
den Grad der Singularitidt und reduziert letztendlich die Gesamtkosten fiir die Bildsynthese,
da die Artefakte signifikant reduziert werden. VRLs und deren effiziente Abtastung werden in
Kapitel 6 detailliert beschrieben und sind in:

NovAK, J.,, NOoWROUZEZAHRALI, D., DACHSBACHER, C., and Jarosz, W. [2012b]. Virtual ray lights for ren-
dering scenes with participating media. ACM Transactions on Graphics (Proc. of SIGGRAPH), 31(4):60:1-
60:11

erschienen.

Um die Singularitit vollstindig zu vermeiden, konnen die strahlférmigen VRLs zu virtuellen
Biindeln (Virtual Beam Lights, VBLs) ausgedehnt werden. Die zugrundeliegende Idee ist, die
Energie des infinitesimalen Strahllichts {iber ein zylindrisches Gebiet mit endlicher Dicke aus-
zudehnen (siehe Abbildung 2.c). Dadurch verschwindet die Singularitdt ganzlich aus dem In-
tegranden und es ist nicht mehr nétig, den Lichttransport zu beschranken und nachtréglich die
fehlende Energie wieder zurtickzugewinnen. Diese Idee wird in einem progressiven Algorith-
mus umgesetzt, der anschaulich zu Beginn leicht unscharfe Beleuchtung berechnet, aber mit
zunehmender Rechenzeit und durch Reduzierung der Dicke der VBLs zur tatsdchlichen Losung
konvergiert. VBLs erhalten das Aussehen von Materialien und Medien besser, benotigen keine
Behandlung von Sonderfillen zur Vermeidung von Artefakten und reprasentieren den aktuellen
Stand der Technik fiir die Bildsynthese von partizipierenden Medien mit virtuellen Lichtquellen
dar. Der Algorithmus wurde in:
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NovAK, J., NowROUZEZAHRAI, D., DACHSBACHER, C., and Jarosz, W. [2012a]. Progressive virtual beam
lights. Computer Graphics Forum (Proc. of Eurographics Symposium on Rendering), 31(4):1407-1413

veroffentlicht.

Beschleunigung der Sichtbarkeitsberechnung

Praktisch alle Verfahren, die die Lichtausbreitung in einer Szene berechnen, miissen wahrend
der Berechnung tiberpriifen, ob zwei Punkte in einer Szene zueinander sichtbar sind, oder
ob der Lichttransport durch Fldchen oder partizipierende Medien dazwischen behindert wird.
Many-light-Methoden bilden hier keine Ausnahme denn die Sichtbarkeit wird sowohl bei der
Konstruktion von Photonenpfaden, als auch bei der Berechnung der Beitrdge von virtuellen
Lichtquellen zu Oberflaichenpunkten oder Punkten in Volumen tiberpriift. Um diese Sicht-
barkeitsberechnung zu beschleunigen, wird in dieser Arbeit die Rasterized Bounding Volume Hi-
erarchy (RBVH) Beschleunigungsstruktur fiir schnelles, approximatives Raytracing vorgestellt.

Die zugrundeliegende Idee ist, feintessellierte und detaillierte Geometrie durch Hohenfelder
(d.h. Rasterbilder, die Hohendaten speichern) darzustellen. Wahrend des Aufbaus der Daten-
struktur werden Teile der Eingabegeometrie identifiziert, die sich gut durch ein einzelne, beliebig
orientierte Hohenfelder darstellen lassen. Diese werden anschlieffend rasterisiert und in einer
Hierarchie von Hiillkérpern angeordnet (dhnlich zu den klassischen Hiillkérperhierachien fiir
die Beschleunigung von Raytracing). Um Strahlen zu verfolgen, wird die Hierarchie traversiert
und nach Schnitten mit Hohenfeldern gesucht. In der Praxis ist dieser Ansatz schneller als tra-
ditionelle, polygonbasierte Beschleunigungsstrukturen. RBVHs bieten aufierdem eine inhdrente
Oberfldchenparameterisierung, die weitere Anwendungen, wie das Bemalen der Oberfldchen in
Echtzeit und sogenanntes Irradiance Caching ermoglicht. Die Details hierzu werden in Kapitel 8
vorgestellt, welches auf folgender Veroffentlichung beruht:

NovAK, J. and DACHSBACHER, C. [2012]. Rasterized bounding volume hierarchies. Computer Graphics
Forum (Proc. of Eurographics), 31(3):403—412.



Chapter 1

Introduction

A painter should begin every canvas with a wash of black, because
all things in nature are dark except where exposed by the light.

— LeEoNARDO DA VINCT (1452-1519)

become an important instrument of communication. The first attempts to share stories

through imagery date back to prehistoric times. Starting with cave drawings, followed
by perfecting the painting craftsmanship, through photography and motion picture, all the way
to the contemporary, computer assisted image synthesis, we are on a long quest for delivering
unparalleled visual experience; be it for capturing reality or rendering imagination.

E ver since humans became self-aware, capturing and reproducing visual experience has

When an artist wants to project the real world onto a canvas, he knows he needs to reproduce
many intricate phenomena that light creates. From shadows, color-bleeding, caustics, to aerial
perspectives and effects due to dispersion, he must precisely replicate the outcomes of interac-
tions of light with the environment. With photography and cinematography, this became much
easier and the need for delicate painting skills was alleviated through advances in technology.
However, analog and digital light sensors can only capture what is real. Virtual worlds thus
still remain the domain of artists, and only since recently, also of computers. To convert virtual
scenes into believable images, we need to mimic physical processes that light undergoes. This
is indeed a very challenging task requiring not only a full understanding of how light interacts
and propagates through matter, but also the ability to simulate it accurately. With the recent
advent of computers, this became more tractable and we witnessed tremendous improvements
in computer generated imagery in the last three decades.

Yet there are still many problems that are not satisfyingly resolved. One of them is the propa-
gation of light in complex scenes. On a molecular level, this may seem trivial as the transport
is governed by a few well-known principles and laws. However, the exquisite intricacy comes
with the vast number of atoms forming the world around us, and the vast number of photons
that interact with them. And it is the extreme number of interactions, which we strive to simu-
late; ideally in a fraction of a second, that makes the problem extremely challenging. It seems
reasonable to ask whether we need to simulate all of these interactions. Most likely not. The
question is however ill-conditioned as many aspects of the human visual system, and perception
in general, are still not sufficiently understood. As such, drawing lines between what should
and what does not need to be simulated can easily leave us stuck in the uncanny valley.

IThe term “uncanny valley” was coined in human aesthetics and robotics signifying visual look and movement that
is almost, but not quite, human. The emotional response to such nearly human-like characters is often repulsive and
sickening.
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Realistic image synthesis is an area of computer graphics that is concerned with creating images
indistinguishable from photographs. Any progress made in this field quickly finds its use in
product design, film industry, architecture, but also in scientific visualization as efficient solu-
tions to light transport can frequently be applied to similar problems, e.g. in medicine.

The primary goal of realistic image synthesis is to reproduce all visual phenomena due to the
transport of light. Secondary—but often equally important—is the speed at which the images
are generated. Achieving a good balance between these two requires i) a suitable mathematical
framework for solving the integro-differential transport equations, ii) the right approximations
that yield speed-ups but do not compromise quality, and iii) an efficient computational approach
for realizing the solution on modern hardware. As these criteria do not always align with each
other, finding the right flavor has been, and still is, the aim of research in photorealistic rendering.

In this thesis, we build upon the so-called many-light algorithms, which exhibit great versatility
and cover a wide range of quality and performance applications. At the core of these algorithms
is an important observation that the general light transport, which is costly to simulate as pho-
tons may undergo many interactions before reaching the sensor, can be formulated as a much
simpler problem of evaluating only direct illumination from a collection of specifically generated
virtual light sources. As such, most of these algorithms fulfill the first and the third criterion of
choosing a suitable mathematical framework and an efficient computational approach. However,
they often over-simplify the simulation and thus compromise the quality of resulting images.

In a nutshell, many-light algorithms represent all indirect illumination using a set of virtual
point lights (VPLs). This brings several advantages, e.g. non-recursive evaluation, typically low
amount of noise, and the chance to efficiently handle visibility computation. Nevertheless, there
is one distinct drawback characteristic to VPL-based rendering: contracting all indirect lighting
into a finite number of infinitesimal point lights introduces singularities, i.e. points where the
integrand is undefined. Furthermore, since the radiant flux density due to a point light is
inversely proportional to the squared distance to the source, surfaces and volumes that are close
to virtual lights appear much brighter than other points in the scene. While the algorithm is still
unbiased, the resulting images suffer from high, possibly unbounded variance, which surfaces
as occasional bright “splotches” in the image. In order to remove these artifacts, most many-
light algorithms bound the contribution of each virtual light. Unfortunately, this non-uniformly
darkens the render and changes the appearance of materials.

Our goal is to improve the quality of many-light algorithms while preserving their favorable
properties, i.e. high performance, scalability, and elegance. We focus on illumination that
emphasizes the presence of virtual lights, and has so far been considered difficult to render
with many-light techniques. In particular, we aim at scenes containing glossy materials and/or
participating media. While these two phenomena may seem orthogonal, they present similar
challenges to many-light rendering. They both emphasize the discrete nature of the solution,
resulting in pronounced artifacts that plague the final image. They require more virtual lights to
capture the light transport accurately than in the case of diffuse scenes with vacuum, and finally,
they contribute immensely to the realism and visual complexity of the rendered image.

In the chapters to follow, we develop new integration techniques and introduce novel lighting
primitives that allow many-light algorithms to handle scenes with glossy surfaces and partici-
pating media more efficiently. We outline our original contributions followed by an overview of
the thesis in the next two sections.
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1.1 Overview of Original Contributions

The work presented in this thesis builds upon many-light methods. We outline our contribu-
tions that improve the bias compensation for point-based many-light techniques, present new
virtual light primitives for rendering in the presence of participating media, and describe a new
acceleration structure for fast visibility tests.

1.1.1 Efficient Bias Compensation

Our first contribution targets the efficiency of bias compensation, which can be used to “correct”
the bounded, biased solution of typical many-light algorithms. We start by analyzing the energy
that is lost due to clamping the singularity. Then we reformulate the bias compensation to enable
more efficient integration, and also propose several simplifying assumptions that have negligible
impact on quality, but yield orders of magnitude faster solutions. For greater efficiency, we
propose two techniques tailored for surfaces and volumes independently, both of which can be
easily parallelized enabling further acceleration on modern graphics hardware.

1.1.2 Ray and Beam Lights

In participating media, scattering of light happens continuously along the direction of travel. We
leverage this observation and propose a novel lighting primitive, the virtual ray light (VRL), which
is formed by an entire line segment instead of just the vertex of a photon path. Distributing the
energy along the line provably lowers the degree of the singularity. This in practice reduces
the distracting “splotchy” artifacts—the major weakness of many-light algorithms—and thus
improves the convergence, enhances temporal stability, and brings down the overall rendering
cost. In order to avoid the singularity completely, we also propose to inflate the ray light into a
virtual beam light (VBL) and further redistribute the energy over a cylindrical region with finite
thickness. To ensure convergent results, we formulate the rendering algorithm progressively,
ensuring that the error due to redistributing the energy diminishes in the limit.

1.1.3 Rasterized Bounding Volume Hierarchies

A frequent bottleneck of rendering algorithms is the computation of visibility, and many-light
algorithms are no exception. To tackle this problem we present a rasterized bounding volume hierar-
chy (RBVH); an acceleration structure for fast, approximate ray tracing. We make the observation
that decoupling visibility testing from the input, possibly finely tessellated, geometry can lead
to higher tracing performance. In order to construct an RBVH, we identify surfaces that can
be projected onto a grid without folding. Then we organize them into a hierarchy of bounding
volumes and rasterize them into a texture atlas. We show that RBVHSs can achieve higher tracing
performance than traditional BVHSs, and natively provide a storage for various surface signals.
We also describe a hybrid approach that enhances the robustness of our approach. The benefits
of the hierarchy are demonstrated on several applications such as real-time on-surface painting,
illumination caching, or rendering of point clouds.
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1.2 Organization of the Thesis

The thesis is organized into nine chapters. After this introduction, we lay out the fundamentals
of radiative light transport in Chapter 2. We first briefly review the history of physics concerned
with the propagation and nature of light. Then we point out important radiometric models and
quantities, describe how light interacts with surfaces and media, and gradually derive funda-
mental equations governing the propagation of light.

In Chapter 3, we focus on many-light algorithms, describe the generation and lighting with
virtual lights, and provide a detail overview of existing approaches categorized with respect to
scalability and target application.

Efficient bias compensation is the main concern of Chapters 4 and 5. We analyze the impact
of bounding the singularity and derive an efficient compensation technique for scenes with
participating media. We also formulate a new hierarchical integration scheme that enables an
efficient bias compensation between surfaces.

In Chapter 6, we present a new lighting primitive—the virtual ray light—and devise importance
sampling strategies for minimizing the variance in scenes with isotropically as well as anisotrop-
ically scattering media.

In Chapter 7, we extend the ray light primitive into a beam light, removing the singularity
completely. We also describe a progressive version of the algorithm that ensures asymptotically
convergent results.

Finally, in Chapter 8, we present a new hierarchical data structure for accelerating approximate
visibility queries. We compare its construction and performance to the current state of the art
and demonstrate its versatility on several applications.

We conclude the thesis in Chapter 9 and provide additional derivations, analysis, and interpre-
tations in Appendix A.



Chapter 2

Fundamentals of Radiative
Light Transport

There is a crack in everything.
That’s how the light gets in.

— LeonarD CoHEN (1934)

that is capable of directly causing a visual sensation. In this chapther, we lay out the

fundamentals of radiative transport and detail the most important principles that are
employed in the chapters to follow. We start by briefly reviewing the history and evolution of
ideas concerned with the nature of light. Then we outline four areas of optics, which study
the phenomena at different levels of abstraction. We also introduce quantities for expressing
the amount of radiant energy with respect to different measures, and explain principles that
light obeys when interacting with surfaces and media. This knowledge will allow us to formu-
late transport equations that govern propagation of light and define the radiative equilibrium.
Methods suitable for evaluating these equations are described at the end of the chapter.

V isible light, as defined by the International Lighting Vocabulary [CIE 1987], is a radiation

2.1 Historical Introduction

The first systematic writings formalizing the propagation of light date back to antiquity, when
Greek philosophers Empodocles and Euclid (cca. 300 BC) formulated the principles concerned
with the reflection of light. Although they also speculated on effects due to light being refracted,
it took until the seventeenth century when Snell experimentally discovered the law of refraction,
and Fermat pronounced the principle of least time, stating that “nature always acts by the shortest
course”. Following these observations, Grimaldi and Hooke discovered the tendency of light
to bend around obstacles, commonly denoted as diffraction. In 1666, Newton observed white
light being split into component colors when passing through a refractive prism, known as the
dispersion of light, and concluded that each spectral color has its specific index of refraction.
Concurrently, Huygens was conducting experiments revealing polarization of light. These and
several other findings demanded the light transport to be governed with a fundamental theory.
To that end, two competing hypotheses were enunciated. In the following we briefly describe
their historical evolution; more in-depth information can be found in Born and Wolf [1999].
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The first hypothesis was pioneered by Huygens who improved and extended the existing wave
theory, originally postulated by Aristotle. Physicists adhering to the wave theory presumed that
the space is filled with elastic aether, where every point receiving luminous disturbance can
act as a source of new disturbance, which is further propagated in spherical waves. While the
wave theory respected most of the formerly established laws and principles, it had, at the time,
difficulties reasoning about the cause of polarization. This was mostly due to the concurrent
unfamiliarity with transverse waves;! and longitudinal waves,? which were already known from
the propagation of sound, would not provide the desired answer.

The second, concurrent hypothesis, which laid the basis for many experiments undertaken by
Newton, was based on the corpuscular theory. The origins of the corpuscular theory date back to
antiquity, when Democritus speculated on all matter, including light, being formed by corpuscles
(i.e. small particles) that travel along straight lines with finite velocity. The widely recognized
authority of Newton and the lack of evidence for transverse waves made the corpuscular theory
prevail over the wave theory for nearly a century.

The revival of the wave theory took place at the beginning of the nineteenth century, when Young
clarified the effects of interference using transverse oscillations of the aether. Within the same
theoretical framework, Fresnel postulated principles governing the intensity and polarization of
light undergoing reflection and refraction. The decisive moment in favor of the wave theory,
however, came with an experiment originally suggested by Arago. He proposed to compare the
speed of light in media of different optical thickness (e.g. air and water); an experiment for which
the theories yielded contradictory results. While Newton’s corpuscular theory claimed light to
travel faster in optically thicker media, the wave theory correctly predicted smaller velocity, and
was indisputably confirmed by two independent realizations of Arago’s experiment in 1850.

The advent of the elastic wave theory continued with equations and principles derived by Navier,
Cauchy, Rayleigh, Doppler, and others. However, the supposed presence of the aether, imagined
as an elastic solid, raised several questions: e.g. why is there no observable resistance of the
aether against celestial bodies such as planets and stars? These concerns, stemming from all na-
ture being reasoned about using strictly mechanical principles, were rendered irrelevant with the
recognition of electromagnetic fields. The research of electromagnetism evolved almost indepen-
dently of optics, but only up to the moment when Kohlrausch and Weber calculated the speed of
electromagnetic waves be equal the speed of light. This led Maxwell, whose equations form the
basis of the wave theory as we know it today, to assume light have the form of electromagnetic
waves. In the upcoming years, the quest for explaining the nature of light using mechanical
models was gradually abandoned and the complexity of electromagnetic field, which cannot be
reduced to anything simpler, finally accepted.

The last significant turning point to set both theories complementary rather than exclusive came
after Planck’s discovery that electromagnetic energy is emitted in small quanta, also called pho-
tons. This helped Einstein in clarifying the photoelectric effect using the corpuscular theory. With
the wave theory being able to explain diffraction and interference, and the corpuscular theory
elucidating the photoelectric effect, physicists settled on a conclusion that light exhibits a du-
ality; the particle-wave duality. This means that some phenomena can be satisfyingly explained
only with one of the theories, but none of them can single-handedly describe the light transport
in its entire complexity.

1Oscillation of matter in directions perpendicular to the direction of wave propagation
2QOscillation of matter parallel, i.e. back and worth, to the direction of wave propagation.
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2.2 Models of Light

The brief historical introduction from the previous section indicates that the propagation of light
and its interaction with matter can be studied at various levels of abstraction. It is not always
necessary to consider all aspects of its transport; indeed, neglecting properties that are irrelevant
to a given task can simplify the problem and concentrate the focus on the phenomena of interest.
In the following paragraphs, we outline four different areas of optics introducing them from the
simplest to the most complete. The classification is adopted from Saleh and Teich [2007].

Geometrical Optics. The most straightforward theory of light transport, describing the phe-
nomena at the level of geometric rules, is called geometrical optics (sometimes also called ray
optics). In a sense, geometrical optics amounts to the corpuscular theory and its use is most
appropriate when the wavelength of light is negligible compared to the size of objects encoun-
tered along its path. Saleh and Teich [2007] characterize geometrical optics as a limit of the wave
theory when the wavelength is infinitesimally small, and Born and Wolf [1999] demonstrate that
Maxwell’s equations in such case obey geometric rules. Under these simplifications, light can
be expressed in the form of light rays. The transport of these rays is governed by a number of
postulates, such as that light travels along straight lines in homogeneous media, it obeys Fer-
mat’s principle of least time, and the amount of refraction is dependent on the relative speeds
of light in the two media. The model allows light to be emitted, reflected, refracted, scattered
in the media, or absorbed. These interactions are enough to simulate illumination effects that
computer graphics is most concerned with, and thus, geometrical optics represents the most
frequently used model in rendering nowadays.

Wave Optics. A more complex theory, which contains the geometrical optics as a special case,
describes the propagation of light in the form of waves. Wave optics assume light to be composed
of a single scalar function of position and time, called the wave function, which obeys the wave
equation [Saleh and Teich 2007]. Waves with wavelength between 10nm and 1mm are called
optical waves and are further classified as ultraviolet (10nm to 390nm), visible (390nm to 760nm),
or infrared (760nm to Imm). All optical waves are subject to the principle of superposition, i.e.
the sum of any two optical waves is also an optical wave with intensity attributed to interference.
For example, let us consider two waves with the same intensity. In the case of constructive
interference when the phases of both waves align perfectly, the total intensity equals four times
the intensity of each of the original wave. In the case of destructive interference, the waves
“cancel out” and the resulting intensity is zero. In addition to interference, wave optics can also
simulate the effects of diffraction and dispersion of light.

Electro-Magnetic Optics. Light, as all other electromagnetic radiation, propagates in the form
of two coupled vector fields, i.e. the electric field and the magnetic field. Electro-magnetic optics
studies the propagation of light with no simplifying assumptions, at the level of these two vector
fields. At its core are the Maxwell’s equations, which describe the divergence and rotation of
each of the vector field with respect to the medium the radiation propagates through. The vectors
of the electric and magnetic fields are perpendicular to each other and oscillate transversely to
the optical axis (i.e. the direction of propagation). If the oscillations are within a plane, we call
the light linearly polarized. In case when the vectors rotate around the optical axis, the light
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is said to be either elliptically or circularly polarized, depending whether the projections of the
vectors’ endpoints onto a plane perpendicular to the optical axis follow an ellipse or a circle,
respectively. Maxwell’s equations provide a complete guide to solving the propagation of light;
however, the level of detail is too high for most practical rendering scenarios and they are thus
rarely used in realistic image synthesis.

Quantum Optics. Although electro-magnetic optics can precisely describe the propagation of
light, the exchange of energy (e.g. due to the photoelectric effect) is left for interpretation to
quantum theory. The fundamental principle of quantum optics is that light consists of photons
that carry electromagnetic energy and momentum. They also exhibit a wave-like character that
allows them to interfere and diffract. The electric field of a photon reacts with the charges present
in atoms of matter. The photon is annihilated (absorbed) by the matter when it transfers its
energy to an atom raising it to a higher energy level. In the opposite case, when the atom transits
to a state of lower energy, a photon is emitted. In computer graphics, the laws of quantum optics
can be used to simulate materials exhibiting luminescence and phosphorescence.

2.3 Domains, Measures, and Conventions

In this section, we introduce several important domains, related measures, and conventions to
facilitate mathematical formulations delineated in the following text.

In many situations, it is convenient to treat surfaces and media independently. A medium is
defined as all matter that fills a region of space. The interface between two adjacent (non-
interpenetrating) media is then denoted as a surface. Let R3 be a three-dimensional space,
0V C RR3 the union of all surfaces, V = R%\ 9V the space between all surfaces referred to as
media, and S? = {w € R?;|w| = 1} the set of all directions. Then the Cartesian product R3 x S?
represents the space of all possible rays, called the ray space. A ray with origin x and direction
w is denoted as (x,w). The ray space can also be represented as R® x R3 with a ray denoted as
(x—=y).

Measures A(S), V(V), and ¢(Q) represent the area measure [m?], volume measure [m3], and solid
angle measure [sr] of subsets S C 0V, V C V, and Q) C S2, respectively. In addition to those
we define two projected measures. For a smooth surface S with normal n(x), the projected area
measure A+ (S) defined with respect to direction w is the perpendicular projection of .A(S) onto
a plane perpendicular to w:

AL(s) = /5 In(x) - w| dA). 1)
Similarly, the projected solid angle measure o (Q) is defined as:
(@) = [ n(x) - wldo(w), 2.2)
Q

and can be understood as projecting o(Q2) onto a plane perpendicular to n(x).

In the rest of the text, we use the following conventions: points € R are written in bold and
primarily denoted by x, y, and z. Directions are written in italics and mostly denoted w. For
spatio-directional quantities varying with x and w, we use arrows <— and — to emphasize that
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quantity h(x < w) is arriving at x from direction w, and quantity h(x — w) is leaving x in direction
w, respectively. Additionally, we also use the convention that directions always originate at x
and point towards the source or the destination of &, i.e. w may face the opposite direction than
in which h propagates.

2.4 Radiometric Quantities

In order to simulate the propagation of light, we need to quantify the energy associated with
light transport. The field of physics that is concerned with measuring the amount of electromag-
netic radiation with respect to one or more parameters is called radiometry. It defines several
quantities and their physical meaning and units. In the following, we review the most relevant
ones for realistic image synthesis.

Radiant Flux. Radiant flux (or radiant power), commonly denoted ®, is the basic radiometric
quantity expressing the amount of energy that passes through a region of space per unit time.
The unit of radiant flux is the Watt [W] and can be further decomposed into SI units as joules per
second [J - s71]. Flux is often used to quantify the amount of energy emitted from light sources.
One can imagine this as measuring all light that is originating from a light source and passing
through an imaginary sphere that encloses it. It is worth noting that the size of the sphere does
not matter since radiant flux quantifies the total amount of emitted (or received) energy, not its
density.

Irradiance, Radiant Exitance, and Fluence. It is often convenient to express the amount of
radiant flux per unit area. Irradiance, denoted E, is the quantity that measures the area density
of flux incident on a surface. Similarly to the previous example, consider a sphere with the
center aligned to an omni-directional point light. The area density of radiant flux incident on
the inner surface of the sphere will depend on its radius r: E = ®/4mr?. The quadratic term in
the denominator will become one of our major concerns in later chapters.

In the general case, irradiance is a function of position x, defined as the differential flux received
by a differential area d.4(x) around x:

_ do(x)
T dA®x)

E(x) (2.3)
Given this relation, we can derive an integral that expresses the total flux ® received by a surface
with area A:

- /A E(x)dA(x). (2.4)

When flux is self-radiated from a surface, we talk about radiant emittance. If we also add the
radiant density that the surface reflects, i.e. we combine the emission with the reflected light,
we obtain radiant exitance (M), which is sometimes also denoted radiosity (B); the name was
adopted from the heat transfer literature. The volumetric analog to irradiance, i.e. the radiant
flux reaching a small region of space from all directions, is called fluence (F).
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(a) Radiant flux (b) Irradiance (0) Radiant intensity (d) Field radiance (e) Surface radiance
0] I(w) L(x+w) L(x+w)
XA N

Figure 2.1: Fundamental radiometric quantities.

All of the aforementioned densities have the same unit [W - m~2]. In some publications they are
also referred to as intensity; however, this often leads to confusion with radiant intensity, which
is introduced next. One can always distinguish them by inspecting the units.

Radiant Intensity. We can also measure the directional density of flux. This quantity is called ra-
diant intensity (I) with the units of watts per steradian [W - sr~!]. It is often used as an alternative
way of specifying power of point light sources. Radiant intensity is defined as the differential
flux emitted along directions confined to a differential solid angle do(w) around direction w:

_ do(w)
l(w) = do(w)’

(2.5)

Computing the radiant flux emitted from a light source with known radiant intensity amounts
to integrating I over the solid angle (), through which the light emits photons:

¢=A#wwd@. (2.6)

Radiance. Probably the most important quantity in rendering is radiance, commonly denoted L.
It measures the light arriving to a small region from a small spread of directions. The term field
radiance is often used to describe incident light at a general point x in three-dimensional space.
Field radiance is defined as the radiant flux arriving through differential solid angle do(w) and
passing through differential area d.A-(x) on a hypothetical plane, which is perpendicular to w
and contains x (see Figure 2.1.d for an illustration):

d’®(x, w)

@) = ST )do (@)

(2.7)
When x is on a surface with normal 7(x), it is often convenient to express the incoming light with
respect to the differential area d.A on the surface, instead of d.A* on the hypothetical plane. This
amounts to defining d. A+ as d A projected onto the hypothetical plane, i.e. dA+ = |n(x) - w|dA.
The dot product captures how much the surface faces the incoming light and accounts for
spreading of light rays at grazing angles. The equation for computing the surface radiance from
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radiant flux reads:

d’®(x, w)
|n(x) - w|dA(x)do(w) "

L(x,w) = (2.8)

In some cases it is beneficial to express radiance in terms of the projected solid angle do(w) =
[n(x) - w|do(w):

d’®(x, w)

Lo w) = Aot (@)

(2.9)

As long as it is obvious from the context, we will not distinguish between field and surface
radiance, and always refer to the quantity as radiance in the rest of the text. The units of
radiance are watts per steradian per square meter [W - sr™'m~2]. Analogously to the incident
radiance, we can also define the outgoing (e.g. emitted or reflected) radiance.

In order to compute irradiance E(x) and radiant exitance M(x) at a surface point x radiating
through the upper hemisphere #2, we need to integrate the incident and outgoing radiance,
respectively:

E(x) = /H Z'I(X)L(x<—w) (n(x) - w) do(w), (2.10)
M(x) = /H Zn(x)L(x%w)(n(x)-w)da(w). @.11)

Computing the radiant flux ® received by a surface amounts to integrating the cosine-weighted
incident radiance L(x+<w) over the area A of the surface and over the upper hemisphere #? of
directions about the surface normal n(x):

¢ = /A ./%zn(x) Lixw) (n(x) - w) do(w)d A(x). 2.12)

An important property of radiance is that the sensitivity of human eyes and camera sensors is
proportional to the incident radiance. Another characteristic of radiance is that it stays invariant
along straight lines in vacuum. More precisely, assuming no participating medium or surface
between points x and y, the incident radiance at x can be expressed as the outgoing radiance
from y:

L(x+w)=Lly— —w), (2.13)

y—Xx

where w =
x=yll

. These two properties make radiance the quantity of choice for many rendering
algorithms.

For brevity, in the rest of the text we will use shorthand notations dx and dw for the differ-
ential area d.A(x) around point x and the differential solid angle do(w) around direction w,
respectively.
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2.5 Interaction of Light with Surfaces

In the following sections, we detail local interactions of light with surfaces and media, respec-
tively, gradually extending towards equations that govern the transport from a more global
perspective.

2.5.1 Bidirectional Distribution Functions

When light reaches a surfaces, it can be reflected, refracted, or split and take part in both of these
interactions. The directions and fractions of the reflected and refracted light are governed by the
law of reflection, Snell’s law of refraction, and Fresnel’s equation. These derive the behavior of
light from the Fermat’s principle of least time with respect to optical parameters of media at both
sides of the surface. Although the laws are easy to implement, applying them at a microscopic
level would make rendering of macroscopic objects (i.e. objects that we can see with naked eyes)
intractable. It is also worth noting that geometric variations below the scale of the wavelength
can be ignored as they do not affect the wave. As such, rendering algorithms often require
surfaces to be described at a mesoscopic level (approx. 1pm to 1 mm), incorporating the effects
of microscopic scattering directly into the surface description. The description, referred to as the
bidirectional scattering distribution function (BSDF) [Heckbert 1991], captures the average behavior
of light in a small volumetric region around the point of interest, including the absorption and
emission of light.

In general, the amount of light leaving point x in direction w depends on the amount of radiance
arriving at x from all directions. From Equation (2.10) we can derive the differential irradiance
arriving from direction «’ at the differential area around x:

dE(x+w') = L(x¢ ') [n(x) - o'| dw'. (2.14)

If we now express the relative amount of this light that is scattered by the surface in direction w,
we obtain the definition of the BSDF f;(w + x<w'):
dL(x—w) dL(x—w)

Slwexe) = Ecaw) T Lxew) n00) - o[ da’ (15)

In other words, the BSDF specifies how much of the differential irradiance arriving from a
particular direction continues along another direction after interacting with the surface. Given
this definition, we can relate the outgoing and incident radiance. The radiance leaving point x
in direction w, is defined as the product integral of the BSDF and the differential irradiance (i.e.
the cosine-weighted incident radiance) over the sphere S? of all possible directions:

Lix—w) = /Szfs(aﬂ—m—w’) dE(x+w')dw’

= Szfs(w<—x<—w’) L(x+a') |n(x) - '| dw'. (2.16)

It is sometimes convenient to consider only the reflected light, i.e. light that exits through the
same hemisphere as it arrived. In such cases we talk about bidirectional reflectance distribution func-
tion (BRDF), and we ignore the light that radiates through the opposite hemisphere. Analogously,
we can use bidirectional transmittance distribution function (BTDF) to describe the distribution of
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(a) Diffuse BRDF (b) Glossy BRDF (c) Specular BRDF

Figure 2.2: Examples of BRDFs: (a) diffuse BRDF reflects light uniformly into all directions, (b) glossy
BRDFs concentrate the scattered light within lobes, (c) specular BRDFs, being Dirac delta functions, reflect
all light into a single direction defined by the law of reflection or refraction.

only the transmitted light. These two complementary functions allow to model the reflection
and transmission independently and were formalized by Nicodemus et al. [1977]. Combining
two BRDFs and two BTDFs (a pair for each side of the surface) makes up for a complete BSDF.

All of the aforementioned distribution functions assume that light incident at some point leaves
the surface at the same point. In cases when this assumption becomes inappropriate, and we
still do not want to simulate the full light transport in the medium “below” the surface, we can
use the bidirectional surface scattering reflectance distribution function (BSSRDF) [Nicodemus et al.
1977] fs(x—w, X' < w'). Computing the outgoing radiance L(x — w) then requires additional
integration over the area around x:

Lix—w) = /A/Hz()fs(x—>w,x'<—w’)L(x'<—w’)(n(x')-w’)dw’dx’. 2.17)

In practice, distribution functions are often wavelength dependent and can take arbitrary non-
negative values. In general, it is however desired for the distribution function to be physically
based and follow two additional constraints:

Energy conservation. The total amount of scattered flux must be less than or equal to the flux
incident on the surface. This is captured by the following equation:

/‘;«z filwxa') n(x) - o'|do’ < 1. (2.18)

Distribution functions that do not conserve energy can prevent global illumination algorithms
from finding the radiant equilibrium: by bouncing around the scene the light gets more and
more amplified, in which case, the rendering algorithm may not converge.

Reciprocity. The amount of scattered light is invariant to the direction of light flow. More
precisely: reversing the incident and outgoing directions does not affect the amount of light
being scattered. This is nicely demonstrated by an experiment where a light source illuminates
a reflective surface and the reflected light is measured by a sensor. If we exchange the source
with the sensor then the reflected light measured by the sensor stays the same.® The principle
of reciprocity, which is often called after its discoverer Hermann von Helmholtz [1924], ensures
that the interaction of light with surfaces is symmetric, i.e. equal for both directions of travel.

3 Assuming that the light source, the surface, and the sensor are sufficiently small.
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Satisfying the Helmholtz reciprocity is important especially for algorithms that resolve the light
transport from both directions, e.g. bidirectional path tracing, since they assume that construct-
ing a path in the reverse direction yields the same result. Since reflection is known to be sym-
metric,* physically based BRDFs are reciprocal. However, this does not hold for general BSDFs.
For instance, when light is refracted on an interface between two media with different refrac-
tive indices, the corresponding BTDF is not symmetric. In such cases, bidirectional estimators
require special treatment of non-symmetrical scattering using adjoint BSDFs, see Veach [1996],
Veach [1997], and Christensen [2003] for details.

Figure 2.2 shows three example BRDFs. Since this thesis primarily focuses on participating
media, we refrain from discussing surface scattering in detail and refer the interested reader to
standard literature, such as Dutré et al. [2006] and Pharr and Humphreys [2010].

2.5.2 Rendering Equation

We shall now present the rendering equation that governs light transport in environments consist-
ing of light sources and surfaces. The rendering equation, as introduced by Kajiya [1986],° does
not attempt to model all aspects of the light transport. Essentially, it is only an approximation of
geometric optics in environments with no participating media. As such, effects due to polariza-
tion, diffraction, varying refractive index, interaction with media, etc. have to be handled with
generalizations based on e.g. path integral techniques [Feynman and Hibbs 1965], or radiative
transfer [Chandrasekhar 1960]. The latter we review in Section 2.7.

Hemispherical Formulation. Motivated by the law of conservation of energy, the rendering
equation defines the steady-state or equilibrium radiance leaving a point as the sum of the emitted
L.(x— w) and reflected radiance L,(x — w):

L(x—w) = L(x—w) + L(x—=w). (2.19)

Given Equation (2.16), the reflected radiance can be expressed in terms of incident radiance
L(x+w'):

L(x—w) = Le(x— w) + /S2 flwexea) Lixea') n(x) - o'| do'. (2.20)

The above rendering equation formulates the equilibrium radiance locally (i.e. with respect to a
single point) by distinguishing between incident and exitant quantities. If there is no participat-
ing medium, we can express the incident radiance at one point as the exitant radiance at another
point using the ray casting function r(x, w):

L(x+w) =L(r(x,w) = —w), (2.21)

“In general, not even reflection is symmetric. There are situations when optical paths are not reversible and light
propagates along a different path when the direction of travel is inverted. Helmholtz noticed that this happens, for
instance, to polarized light in the presence of external magnetic field. As these effects are beyond our interest, we shall
assume reflection to be symmetric.

5Similarly to Chandrasekhar [1960], who uses the term specific intensity, Kajiya [1986] refers to the differential flux passing
between two points using the term intensity. It is more common nowadays to denote this quantity spectral radiance, or
simply radiance for brevity. This avoids confusion with radiant intensity.



2.6 Interaction of Light with Media 15

where r(x, w) returns the surface point seen from x along ray (x, w). By combining the previous
two equations we obtain:

L(x—w) = Le(x—w) + /SZ fs(wsx+') L(r(x, ') = —w') |n(x) - w'| dw'. (2.22)

The equation formulates light transport in terms of outgoing radiance only, and reveals the
recursive nature of the rendering equation. This form of the rendering equation is also known
as the light transport equation.

Area Formulation. An alternative to integrating the incident radiance over all possible direc-
tions is to integrate the contribution from all surface points. To achieve that we need to replace
the differential solid angle with the differential surface area:

do(w') = Wdft(y), (2.23)

where y = r(x, w’). Equation (2.22) can be then written as:

L(x—w) = Le(x— w) + /Afs(w<—x<—w')V(x<—>y)G(x<—>y)L(y—>—w’)dy, (2.24)
where «’ is the direction towards y, i.e. ' = ﬁ The visibility term V is a binary function

returning 1 if x and y are mutually visible, and 0 otherwise. The geometry term G accounts for
the mutual orientation and distance between the two surface points by combining the original
dot product from Equation (2.22) with the scaling factor from Equation (2.23):

n(x) - &' [n(y) - =o'l

Clxery) = x—yI?

(2.25)

Equation (2.24) defines the light transport w.r.t three surface points (direction w can be defined
by a point z as w = ﬁ) and thus is sometimes referred to as the three-point form of the light
transport equation.

2.6 Interaction of Light with Media

In the previous section, we introduced means to describe local interactions of light with interfaces
between media with different refraction indices. In this section, we focus on the transport through
a medium. If the medium has a constant index of refraction, the light propagates along straight
lines. When the index of refraction is continuously changing, the light travels along curved
trajectories. Additionally, the interaction of light with matter involves three main processes:
emission, scattering, and absorption.

In the following, we first outline the physical processes that occur when light travels through
media. Then we provide formalisms of characteristics that affect these processes, and briefly
categorize media accordingly. Finally, we demonstrate how to sample the free path of a photon
and how to evaluate transmittance between two points.
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Figure 2.3: Examples of interactions between an atom and a photon. The wavy curves represent photons
with different wavelengths. The shorter the wavelength the higher the energy and vice versa.

2.6.1 Absorption

Absorption is a process during which electromagnetic radiation is transformed into a different
form of energy, e.g. heat or structural changes. If a photon with the right energy (i.e. frequency)
collides with an atom or molecule, it can be absorbed. See Figure 2.3.a for an illustration. The
energy of the photon must be sufficient to excite one or more electrons in the outer shell of the
atom from their current state to a state with higher energy. If the energy is not sufficient, the
photon will be (elastically) scattered or transmitted.

Absorption occurs only when the medium contains absorptive elements, such as pigments or
dyes. The process of absorption is selective, meaning that pigments and dyes can usually ab-
sorb photons with particular wavelengths only, depending on the molecule’s chromophore. The
chromophore is thus responsible for the spectral distribution of light that survives the absorp-
tion [Baranoski and Krishnaswamy 2010]. In the context of wave propagation, the process of
absorption is also called attenuation.

2.6.2 Emission

The process of exciting electrons into higher energy states can result also from collisions with
another atoms. After some time (approx. 10ns), these electrons spontaneously transit back
to one of the lower energy states and the difference between the two states is emitted in the
form of a photon (see Figure 2.3.b). The frequency of the emitted light is given by the Einstein
equation, f = |AE| /h, where h is the Planck’s constant. In gaseous media, where the interactions
between atoms are rather weak, the spectrum of the emitted light consists of a number of narrow
bands. This is because the atoms have discrete energy levels allowing for only a finite number of
energetic differences. However, when atoms move fast and interact strongly, their high velocities
(relative to the observer) lead to the Doppler effect broadening the bands. If the bands overlap
the spectrum of the emitted light becomes continuous.
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Figure 2.4: (a) Planckian locus in the CIE 1931 chromaticity diagram; image courtesy of E. F. Schubert,
(b) shows examples of black body radiators, and (c) maps temperature of the black body to perceived hue.

An example of an ideal thermal radiator with a continuous spectrum is a black body, which
absorbs all incident radiation, thermalizes it, and then emits uniformly with spectrum dependent
solely on the temperature of the black body. In fact, all matter with temperature above absolute
zero emits radiation. Most thermal radiators with room temperatures emit light in the infra-red
region and only when the temperature reaches about 500°C the light becomes visible. Mapping
between the temperature of a black body and the spectrum of emitted light is described by the
Planckian locus, which defines the change of a color with respect to a temperature in a particular
chromacity space. Figure 2.4.a shows the Planckian locus in the CIE 1931 chromacity diagram,
and three examples of high-temperature radiators.

Temperature is not the only source of emission. Luminescent materials have the ability to tem-
porarily store incident radiation by exciting their atoms to higher energy states. When these
drop back to their ground states, the surplus energy is radiated in the form of light. Fluorescence
is one example of almost instantaneous emission of energy obtained e.g. from ultraviolet light.
Since the electrons return to the ground state via multiple transitions, the high energy of the
ultraviolet light is split into several photons, some of which may have the frequency of visible
light. In cases when the atoms stay excited for a longer time (on the order of milliseconds to
hours) we talk about phosphorescence. The longer response is caused be exciting atoms to so-
called “forbidden” meta-stable states, where the transition does not take the energetically most
efficient path [Tipler and Mosca 2004, Section 31].

Emission can be also stimulated, as illustrated in Figure 2.3.c. If a photon collides with a
molecule that is in an excited meta-stable state, the molecule transits into its ground state emit-
ting a photon that has the same direction and phase as the colliding photon. The reaction can
be chained leading to an amplification of the original light. Stimulated emission is the process
utilized in lasers to produce high energy collimated beams.
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2.6.3 Scattering

There are generally two types of scattering: elastic and inelastic. When a photon does not carry
enough of energy to excite a molecule into a higher state, it is elastically scattered and no energy
is transformed; see Figure 2.3.d. Examples of elastic scattering include Rayleigh and Lorenz-Mie
scattering. Inelastic scattering occurs when a photon carries just the right amount of energy to
excite the molecule, which, however, immediately after the excitation descends back to a lower
energetic state. If the molecule gained energy, then we observe a shift in the spectra of the
scattered light towards lower frequencies (see Figure 2.3.e). In the opposite case the molecule
loses energy and the light becomes higher frequency (see Figure 2.3.f). Inelastic scattering shall
not be confused with the effect of fluorescence, which requires a certain resonance time before
the photon is emitted.

2.6.4 Formalization of Interactions

We now formalize the aforementioned characteristics of media in a collection of parameters,
which can be used during light transport simulations.

Interaction Cross-sections. A microscopic cross-section, or simply cross-section, is an area mea-
sure of the likelihood that a particular interaction between two particles takes place. It refers
to the effective area that a particle presents to another particle (e.g. a photon) for a particular
interaction. The larger the effective area, the higher the chance that a photon will interact with
the particle. The SI units of cross-section are square meters; however, physicist often express the
value in barns (1b = 10722m?) to deal with values in the range of tenths to few barns. Based on
the type of interaction, we distinguish between the absorption cross-section ¢, and the scattering
cross-section 5. The sum of the two then defines the extinction cross-section oy, which represents
the total effective area of absorption and scattering.

Interaction Coefficients. Although being defined on a microscopic level, cross-sections are
rather global parameters of the medium. The actual local probability of an interaction relates
to the local density p(x) [m~3] of the medium, i.e. the number of particles within a unit vol-
ume. Taking this into account yields macroscopic cross-sections, which are in computer graphics
commonly referred to as absorption coefficient «,(x), scattering coefficient «s(x), and extinction coef-
ficient ¢ (x):

Ka(x) = p(x)0a, (2.26)
Ks(x) = p(x)0s, (2.27)
ke (x) = p(x)or = Ka(x) + x5(x). (2.28)

The coefficients define the probability that a photon traveling along a path of unit length will
interact with a particle and take the corresponding interaction. The value of all of the three coef-
ficients is wavelength dependent and defined with respect to a unit distance, which ranges from
millimeters for solids and thick liquids to meters for gaseous media. The extinction coefficient is
particularly useful when defining the optical thickness and transmittance between two points.
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Albedo. Similarly to surfaces, we can also compute the single-scattering albedo a (abbr. albedo)
of the medium:

a(x) = s (x) (2.29)

which describes how much the medium scatters light. If it equals 1, the medium is said to be
perfectly scattering; if it equals 0, the medium does not scatter and only absorbs light.

Phase Function. The angular distribution of the scattered light is modeled by the phase func-
tion f,(w' — w), which is the volumetric analog to the BSDE. However, unlike the BSDEF, the
phase function is normalized:

. fr(w' = w)dw =1, (2.30)

and serves as a density function defining the probability that a photon, arriving along direc-
tion w’ and scattering, continues in direction w. As a convention, the direction of incidence
points towards the scattering point, and the direction of exitance away from it. This is also dif-
ferent from the BSDF, where both directions face away from the surface point. In this text, we
assume the phase function to be independent of the scattering location and use the shorthand
notation f,(w’ — w) instead of the more general, but lengthy f,(«w' —x—w).

2.6.5 Examples of Interactions

In this section, we provide several examples of media with different scattering characteristics.
We start with simple models and gradually proceed towards the more complex ones.

Isotropic Scattering. When the phase function is isotropic, the medium scatters uniformly into
all directions. Since the function must be normalized, there is only one isotropic phase function
with a constant value of 1/47t. The isotropic phase function is an analog to a Lambertian surface.

Anisotropic Scattering. In order to model scattering by small particles in intergalactic dust
clouds, Henyey and Greenstein [1941] devised a phase function, often abbreviated HG phase
function, that defines the anisotropy using a single asymmetry parameter g. The function changes
in one dimension only and can be thus parametrized in terms of only the angle 6 between the
incident and outgoing direction:

1 1-¢°
6) = — .
fru(®) 47 (1+ g% —2gcos6)3/2

(2.31)

The asymmetry parameter ¢ € (—1,1) represents the mean cosine of the deviation from the di-
rection of incidence. The higher the value the more light scatters in forward directions, negative
values yield backward scattering. For ¢ = 0 the phase function reduces to isotropic scattering.
Thanks to the physical meaning of g, one can easily fit HG to an arbitrary phase function just by
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Figure 2.5: Polar plots with different phase functions: (a) shows the isotropic phase function, (b) and (c)
demonstrate examples of backward and forward scattering, respectively, modeled using the Henyey and
Greenstein phase function and Schlick simplified version with k obtained from g using the polynomial
relation from Equation (2.34). Note that the plots have different linear scales to accommodate the full shape
of the phase function.

integrating its product with the cosine of the angle between w’ and w:

g= /52 fr(w' = w)(w - w)dw. (2.32)

By discretizing the above integral, one can also fit to measured data. The usability of HG ranges
from gases and liquids to biological tissues.

In order to avoid the expensive fractional exponent, Blasi et al. [1993] developed a simplified
version which is commonly known as the Schlick phase function:

1 1—k2

fpschlick(‘g) = EW' (2.33)

The asymmetry parameter k € (—1,1) has similar meaning to g. Pharr and Humphreys [2010]
derived a polynomial relation between k and g:

k = 1.55¢ — 0.55¢°, (2.34)

which allows for an approximate representation of HG using the Schlick phase function.

Although both of the previously described phase functions are rotationally symmetric and
monotonous on the interval (0, 77), more complex shapes can be easily obtained using weighted
sums of multiple asymmetric lobes.

Rayleigh Scattering. Rayleigh scattering, named after its discoverer Lord Rayleigh [1871],
refers to interactions of light with particles and molecules that are much smaller than the wave-
length of the light (up to one tenth of the wavelength). It can occur in transparent solids and
liquids, but most often we experience it in gases in the atmosphere. Rayleigh scattering is wave-
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Figure 2.6: Rayleigh scattering is defined by its two characteristic properties: (a) the wavelength dependent
scattering cross-section, and (b) the Rayleigh phase function.

length dependent with the scattering cross-section defined as:

27548 (12 —1\7
os(A,d, 1) = A <ZZ+2> , (2.35)

where A is the wavelength of the light, and 4 and # are the diameter and refractive index of parti-
cles, respectively. Since the probability of light being scattered varies as 1/A%, higher frequencies
towards the blue end of the spectrum are scattered more often than lower frequencies. This ex-
plains the blue color of the sky during the day, and reddish horizons during sunset, when most
of the blue light is out-scattered before reaching the observer. The dependency of the scattering
cross-section on the wavelength of visible light is depicted in Figure 2.6.a.

The phase function of Rayleigh scattering, shown in Figure 2.6.b, is defined as:

3
prayleigh(e) = 1671 (1 + cos’ 9)/ (2.36)

and captures the fact that most of the light is scattered in forward and backward directions;
scattering at right angles achieves only about half of the intensity.

Lorenz-Mie Scattering. When light interacts with particles that are comparable in size to its
wavelength, we can no longer neglect the shape of the particle or the wave character of light.
For such cases, e.g. a planar radiation arriving at a sphere, Ludvig Lorenz [1890] and Gustav
Mie [1908] independently developed a solution to Maxwell’s equations. The solution (sometimes
also called Mie theory) is given as an infinite series that describes the amount and distribution
of light after a collision with a homogeneous set of spheres. Similar solutions can be also de-
rived for cylinders and ellipsoids. Figure 2.7 shows the phase function of Mie scattering for
three differently sized spherical particles. Since the derivation and the resulting solutions are
fairly involved, Nishita et al [1987] proposed to use an experimental approximation devised
by Gibbson [1958] for two particularly interesting types of scattering in “hazy” and “murky”
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Figure 2.7: Phase functions of Mie scattering: (a), (b), and (c) show logarithmic polar plots of phase
functions for Mie scattering in water particles with different radii r. The data was generate using MiePlot
by Philip Laven. (d) demonstrates two approximations for “hazy” and “murky” atmospheres and (e) and (f)
plot these approximations in linear scale to relate them better to phase functions from Figures 2.5 and 2.6.

atmospheres:

1 (1 9 [1+cosf)\®
foMieHazy (0) = 4n<2+2+(2> >, (2.37)

1 (1 33 [1+4cos\*?
foMieMurky () = M<2+2+(2 ) ) (2.38)

Lorenz-Mie scattering occurs mostly in gases and fluids that contain sufficiently large particles,
e.g. water droplets in clouds or fat globules in milk. The solution can be also used in a re-
verse process to determine the size of the scattering particles [Grafimann and Peters 2004], or to
compute the scattering properties of various forms of participating media [Frisvad et al. 2007].

Both Rayleigh and Mie are important when rendering realistic skies. While the first is mostly
responsible for the aerial perspective and the color of a clear sky, the latter is necessary when
simulating light transport in clouds. For a comprehensive explanation we refer the interested
reader to Born and Wolf [1999] and to Bouthors [2008] for rendering skies in real-time.
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2.6.6 Classification of Media.

We can classify participating media with respect to spatial and angular variation of the previ-
ously mentioned volumetric parameters.

Homogeneity and Heterogeneity. If the parameters of a medium (e.g. the particle density
or the cross-sections) are spatially invariant, the medium is homogeneous. As we will show
in Section 2.6.7, certain components of the radiative transfer in homogeneous media can be
expressed in a closed form. If the parameters change with position, the medium is said to be
inhomogeneous or heterogeneous. There are two traditional ways of modeling the heterogeneity,
one is based on procedural description and the other on storing the density in a discretized form
using e.g. voxel grids.

Order of Scattering. The density of the medium also affects the number of interactions that a
photon will undergo on average. If we have a good a-priori intuition about the density and inter-
action coefficients, we can introduce relevant approximations and thereby significantly speed-up
the light transport computation. As an example, consider a thin medium such as fog, haze, or
champaign. Before reaching the camera, the light is not likely to scatter more than few times (if
at all) and we can thus restrict the computation to single-scattering only. The simulation then re-
duces to direct illumination of the volume, which is far simpler than integrating the contribution
of paths of all possible lengths. In the opposite extreme, when photons undergo hundreds and
more interactions, and these are sufficiently localized, we can approximate the multiple-scattering
component using the diffusion process. We detail the individual approaches in Section 2.8.

(An)Isotropy. Media can be also be classified with regards to the phase function. If the phase
function is independent of the position or the direction of incidence, light propagates “equally”
in all directions and the medium is said to be isotropic. Note that the phase function itself can still
be anisotropic, but its shape must be the same everywhere in the medium and for all incident
directions. In some liquids and solids, e.g. those with crystalline structure, the phase function
is truly four-dimensional depending also on the incident direction. Such media are classified as
anisotropic or sometimes also referred to as oriented.

2.6.7 Transmittance

Now that we outlined the different types of interactions and participating media, we can focus
on how light propagates through the volume. In vacuum, photons travel along straight lines
unobstructed and radiance remains constant until the light reaches a surface. In media, on the
contrary, the radiance changes due to absorption and scattering of photons.

Homogeneous Media

Consider a differential beam of light, shown in Figure 2.8, that propagates through a homoge-
neous medium along direction w. We will denote the differential flux of photons entering the
beam through a differential area d.A(x) along directions confined to do(w) as Ly. Let us fur-
ther assume the medium to remain stationary and unchanged for the time of studying the light
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Figure 2.8: Illustration of the Beer-Lambert law that derives transmittance through a homogeneous slab
with extinction coefficient x;.

transport within the beam. We shall now estimate L;, i.e. the fraction of Ly that reaches the end
of the beam without interacting with the medium. As we move further away from x, some of
the original photons will be absorbed or out-scattered. This process of extinction is quantified
by the extinction coefficient x;, which expresses the fraction of light that is lost per unit distance.
Consider an infinitesimal segment of the beam with length dz. Denoting the radiance entering
the segment L, we can write the radiance exiting the segment as L + dL, where dL is the change
due to interactions with the medium. From the definition of «;, the fraction of the incident light
dL/L that makes it through the segment can be written as:

dL

T = —xpdz. (2.39)

The reason for the negative sign on the right stems from the fact that x; expresses only the
magnitude of photons that are lost, not that they should be subtracted from L; this needs to be
accounted for explicitly using the minus sign. Integrating the differential equation yields:

In(L) = —xz +¢, (2.40)

where the constant ¢ vanishes when integrating over a finite length d of the beam:

ll’l(Ld) - ll’l(Lo) = —th, (241)
In (Ld> = —Kd. (2.42)
Lo

The last equation is referred to as the Beer-Lambert law,® which expresses the logarithmic de-
pendence of transmittance (or transmission) T = Ly /Lo on the product of the extinction coefficient
and distance the light travels through the medium. The transmittance represents the fraction of
the original radiance that travels along the entire length of the beam without interacting with
the medium, and can be obtained by exponentiating Equation (2.42):

T =e "4, (2.43)

Equation (2.43) provides means to evaluate the transmittance in homogeneous media along a
segment of length d. For a beam with zero length the transmittance is 1; as the length approaches
infinity the transmittance drops to 0. The product «;d is called optical thickness T and measures

In most literature the Beer-Lambert law is concerned only with absorption. Since we are interested in all light that is
absorbed or out-scattered, we use the «; in our derivation.
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the transparency of a slab of the medium with thickness d.

Since transmittance is multiplicative:

N-1
T(xo4+...<rxn) = [ | T(xi>xi11), (2.44)
i=0

we can evaluate the total transmittance along a path consisting of N segments by first accumulat-
ing the optical thickness and then using a single instance of the (possibly expensive) exponential
function:

T(xg>...xy) =€ ™ L' i, (2.45)

Heterogeneous Media

In the case of a heterogeneous medium, the optical thickness is a function of two arbitrary points
requiring the extinction coefficient to be integrated along the straight line connecting them:

T(x¢y) = /le—yl Kt (x 4 sw)ds, (2.46)

where w is the direction pointing from x towards y. Naturally, transmittance becomes also a
function of x and y:

T(x¢ry) = eTxOV), (2.47)

Generally, the optical thickness between points x and y cannot be expressed in a closed form and
we need to evaluate the integral numerically, e.g. by one of the quadrature rules, which are in this
context referred to as ray marching [Jensen and Christensen 1998, Perlin and Hoffert 1989]. The
idea is to step along the ray connecting x and y breaking up the integration domain into a set of
disjoint segments. The integral is thus replaced by a sum of sub-integrals that are approximated
using one of the quadrature rules (e.g. rectangle, trapezoid, or Simpson’s rule). Since the sum
has to be finite in practice, there will be a certain error. If the marching is equidistant, the error
may show up as aliasing (e.g. banding artifacts). When the length of segments is randomized
(in the spirit of Monte Carlo integration), the aliasing is replaced by noise. Pauly et al. [2000]
elaborate more on different ray marching schemes and propose to randomly jitter a sequence of
equidistantly spaced marching steps to strike a good balance between banding and noise.

The biggest drawback of using quadratures to evaluate transmittance is that the results are
biased. This is because:

E[er(xHy)] £ eE[T<X<_>Y)], (2.48)

where E[X] is the expected value of X. In other words, the stochastic error of estimating the
transmittance will not average to zero and the estimation does not converge to the correct value.

In order to estimate transmittance in an unbiased way, we need to employ a form of rejection
sampling called Woodcock tracking. This technique was introduced for sampling the free path,
which we elaborate on first in the next section and defer the complete description of unbiased
transmittance computation to the end of Section 2.6.8.
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2.6.8 Free Path Sampling

The trajectory of a photon traveling through a medium consists of several segments connecting
the individual interaction events. If the medium has a constant index of refraction, the segments
are linear, but in general, they can be curved if the refractive index changes continuously. The
length of each segment, which is commonly denoted the free path, depends on the local particle
density and extinction cross-section of the medium.

An alternative to characterizing media using an extinction coefficient is to specify the mean free
path. In a homogeneous unbounded medium, the mean free path d,, can be found analytically
by computing the expected value of a probability density function (PDF) p, which is based on
the transmittance along a semi-infite beam (see Equation (2.51) below):

dmw = El[p(d)]

[ee]
= / et rdt
0
1

= —. 2.4
- (249)
The fact that d,; is the reciprocal of x; should be no surprise. While the extinction coefficient
defines the fraction of energy that becomes extinct per unit length, the mean free path defines
the length traveled by a “unit” of flux (e.g. a photon) before extinction.

In the following paragraphs, we detail a few techniques developed over the years to sample the
length of the free path d of a photon traveling from x in direction w. Although we can possibly
sample the distance from an arbitrary distribution and still obtain unbiased results, we will limit
the description to techniques that sample the free path from a probability density function that
is proportional to transmittance, i.e.:

p(x,w,d) < T(x+>x + dw). (2.50)

Homogeneous Media

In homogeneous media, the extinction coefficient is constant and the probability density function
for sampling the free path can be expressed in a closed form. For an infinite medium, the free
path is unbounded and the PDF equals to the transmittance normalized to integrate to unity:

T(d)
Jo  T(t)dt

e*th
fooo e~ kit dt
= e, (2.51)

p(d) =

Integrating p(d) yields the cumulative distribution function (CDF) P(d):

/O " ()t

= 1-—¢M (2.52)

P(d)
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Sampling the length of the free path amounts to inversion sampling of P(d), i.e. choosing a
uniform random number ¢ € (0,1) and solving the equation P(d) = ¢ for d:

g = 1-—e

d = —M. (2.53)
Kt

For ¢ close to 1, the length of the free path will approach infinity.

It may happen that the sampled length of the free path is behind the nearest surface at distance
dmax. In that case, the photon will first interact with the surface and we thus need to clamp d to
dmax and set the PDF of the sample to 1 — P(dyax)-

In some situations, it is desired to restrict the free path sampling only to distances that are shorter
than dy,4y, €.g. when sampling the in-scattered light along a given finite camera ray. This can be
achieved by changing the normalization factor in p(d) to an integral with the upper bound set
to the maximum distance dy; y:

(@) e
pd) = —(FJ———
[ it g
B Kpe Kl
Sl p—— (2.54)
The CDF evaluates to:
ethmax _ eKt(dme*d)
P) = ——g 1 (2.55)
and can be readily inverted to sample d using a random number ¢ analytically:
1 _ -1 Kidmax
A=y — ME— (€= 1)etmr) (2.56)

Kt

Originally, we introduced the aforementioned equations in the context of sampling the free path
in homogeneous media. However, closer inspection reveals that only the extinction coefficient
needs to be constant to obtain the above closed form solutions. Indeed, the absorption and
scattering coefficients can vary spatially but as long as they add up to the same value, we can
still sample the free path analytically. Nevertheless, as the set of media with spatially varying
albedo but constant extinction coefficient is rather theoretical, the practical applicability of the
aforementioned analytic distributions reduces to homogeneous media.

Heterogeneous Media

The length of the free path in heterogeneous media can be, at the cost of some bias, resolved by
ray marching. Except for the termination criterion, the technique is similar to a ray marching
estimate of transmittance. We first draw a random number ¢, and then march along the ray (x, w)
accumulating the optical thickness until the transmittance reaches 1 — ¢ (or simply ¢, since ¢ is
uniformly distributed), or the ray hits the nearest surface. As stated previously, using quadrature
methods to estimate exponentiated integrals does not converge to the correct result. In the next
paragraph, we describe a technique that is unbiased and can be used for both, sampling the free
path as well as evaluating the transmittance.
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Figure 2.9: The idea behind Woodcock tracking is to fill the heterogeneous volume (a) with imaginary
particles, so that the combined majorant extinction coefficient &; is constant throughout the volume. The
algorithm then samples tentative distances (b) and probabilistically decides whether the collision occurred
with a real or an imaginary particle, based on the relative extinction coefficient of real particles (c). In this
example, we show three iterations where the beam of light first collides with two imaginary particles, and
then bounces off a real particle. The plot in (c) shows the real extinction coefficient x;(x) along the beam.

Woodcock Tracking. Another iterative approach for sampling the free path is called Woodcock
tracking [Woodcock et al. 1965], sometimes also known as delta-tracking, pseudo scattering, or
more generally distance sampling. The technique, originally developed for neutron simulation
in reactors with arbitrary shape, was introduced to the field of computer graphics by Raab et
al. [2008]. Woodcock tracking is a form of rejection sampling, where samples are discarded
when the interaction does not occur with “real” particles. The idea is to fill the volume with
“imaginary” particles, so that the combined particle density, denoted p, is the same everywhere;
generally set to the maximum density of real particles. Formally, the imaginary particles have
the following properties (marked with ’):

o = 0, (2.57)
o = o =0, (2.58)
£,(6) 5(0), (2.59)
pP'x) = p—p(x). (2.60)

In words, all imaginary particles have albedo equal to 1 and a perfectly forward-scattering phase
function. All light interacting with imaginary particles is scattered in the forward direction;
therefore, imaginary particles have no impact on the light transport. The majorant extinction
coefficient &; of the combined medium reads:

ke = op(x) +o7p'(x)
= ot (p(x) +p —p(x))
= 01p (2.61)
and is constant throughout the volume.
We can thus analytically sample a tentative free path length d;:
In(1 -
g = =8 (2.62)

Kt
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WoodcockTracking(x, w, tMax)

1 extMax < majorantExtinction()
2t+0

3 do:
4 t<t—1log(1—rand())/extMax
px+txw

if t >= tMax :

break

8  ext < extinction At(p)

9 while rand() > ext/extMax
10 return t

N o Q1

Figure 2.10: Pseudocode of Woodcock tracking.

and then probabilistically decide whether the interaction at x; = x + d;w occurred with a real
or an imaginary particle. For this, we draw a random number . If  is smaller or equal to
the relative extinction coefficient of real particles, i.e. { < x;(x;) /&, the collision involves a real
particle and is accepted. In the opposite case, the light interacts with an imaginary particle, its
flux and direction remain unchanged, and we repeat the process of sampling tentative events
until an interaction with a real particle is found, or the neareast surface is hit. Figure 2.9 shows an
example of the tracking with two imaginary and one real interactions. Pseudocode of Woodcock
tracing is provided in Figure 2.10.

Imaginary particles have no impact on the light transport; they are used just to reason about
the majorant extinction coefficient and to provide an intuition for rejecting interactions and
continuing the tracking further. As for any kind of rejection sampling, the number of rejected
samples depends on how closely the envelope, here the majorant extinction coefficient, matches
the sampled distribution. In media with large differences in density, the relative concentration
of real particles will be locally low, and the tracking is likely to take many steps requiring a lot of
random numbers. This can easily become the bottleneck of the simulation. Some techniques thus
divide the volume into regions with independently computed majorant extinction coefficients
[Szirmay-Kalos et al. 2011, Yue et al. 2010]. This decreases the overall number of imaginary
particles and avoids excessive rejection of samples.

Woodcock Multi-Tracking. In order to evaluate transmittance in an unbiased manner, Jarosz
et al. [2011b] designed an estimator that uses multiple instances of Woodcock tracking. The
transmittance along a finite ray is then estimated by counting the relative number of instances
that interact with the first real particle behind the end-point of the ray. The authors show that
the expected value of such estimator equals to the transmittance and the estimation is unbiased.

One disadvantage of Woodcock multi-tracking is that estimating the transmittance using N free-
path samples requires asymptotically N x M random numbers, where M is inversely propor-
tional to the collision sampling efficiency [Leppanen 2010] of the majorant. This requirement can
be lifted by correlating the tracking of individual free paths using the same sequence of random
numbers ¢, and by using the same random ¢ in the termination criterion of a single tracking.
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2.7 Radiative Transfer Equation

With the various local parameters covered in the previous sections, we can now formulate a more
complete model of light propagation in the presence of participating media. Let us consider an
infinitesimal cylindrical volume dV = d.Adz, where d.A and dz are the differential cross-section
and the differential length of the cylinder, respectively. The change in flux flowing between the
two sides of the cylinder along directions confined to the differential solid angle dw, where w is
the axis of the cylinder, will be subject to four physical processes.

Absorption and Out-Scattering. The change in radiance due to light being absorbed (see Fig-
ure 2.11.a) and transformed into other form of energy can be expressed as:

dL(x—w) = —x;(x)L(x— w)dz. (2.63)
The other loss comes from light being scattered out (see Figure 2.11.b) by the medium:

dL(x—w) = —x5(x)L(x = w)dz. (2.64)
Adding these two together yields the total loss of radiance per dz:

dL(x —»w) = —x¢(x)L(x— w)dz. (2.65)

Emission and In-Scattering. Radiance gained due to emission within the differential cylinder
(see Figure 2.11.c) can be expressed as:

dL(x = w) = #;(x)Le(x — w)dz. (2.66)

The opposite process of out-scattering is when light from all incident directions scatters within
the differential cylinder along direction w (see Figure 2.11.d). The radiance gain due to in-
scattering reads:

dL(x—w) = x5 (x)Li(x = w)dz, (2.67)

where L;(x — w) is given by a product integral of the incident radiance and the phase function
fp(w<—w") over all directions:

Li(x—w) = /52 Folw ') L(xw')da, (2.68)

The self-emission and the in-scattered light are often expressed as a single source term J(x —w):

Jx—w) = (1—a(x))Lle(x—w)+a(x)Li(x—w)
_ (1—1x(x))Le(x—>w)+1x(x)/Szfp(w<——w')L(x<—w')dw’, (2.69)

where «(x) is the albedo at x.

In 1960, Chandrasekhar [1960] defined and concatenated all the previous terms in the funda-
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Figure 2.11: Four processes that define the change in radiance between two sides of a differential cylinder.

mental radiative transfer equation (RTE) that governs the variation of radiance in a medium:’

dL(x—w) = x(x)J(x—=w)dz
—_—
gains
— x(x)L(x—w)dz, (2.70)

losses

which can be further split to emphasize the individual components:

dL(x—w) = x;(x)L.(x—w)dz

emission

+ s(x)Li(x—w)dz

in-scattering
— k(x)L(x—=w)dz
absorption
— Ks(x)L(x—w)dz. (2.71)

out-scattering

The above differential equation can be written in several alternative forms, e.g.:

(w-V)L(x—w) =
+
— k;(x)L(x—=w)
— xs(x)L(x—=w), (2.72)

=

a(X)Le(x = w)

=

(x)
s()Li(x—w)

(%)

(x)

or in an integral form by integrating both sides of Equation (2.71) along a semi-infinite ray (x, w),
i.e. expressing the gains that are subject to extinction as:

Lix-w) = /O°° T(x 45 x¢ )it (x¢) (¢ — —co)dt

= /OoQ T(x<>x¢) [Ka(x¢) Le (Xt — —w) + &5 (x¢) Li(xt — —w)] dt, (2.73)

7In the original book, Chandrasekhar uses the term specific intensity for what is today commonly denoted spectral radiance.
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where x; = x + tw. This integral form of the RTE can be writen concisely as:
(o9

L(x+w) :/0 T(x+>x¢)L(x— —w)dt. (2.74)

2.7.1 Boundary Conditions

Since most of the scenes that we deal with in computer graphics contain surfaces, we need to
express the radiance along a finite ray and with respect to boundary conditions. The boundary
condition for Equation (2.74) is given by Equation (2.20), i.e. for a ray (x,w) hitting a surface
point x;, the boundary condition is equal to the radiance scattered from x;, in direction —w:

L(xp — —w) = Le(xp — —w) 4—./82 fo(—wxpw') L(xp4— ') (n(xp) - ') de'. (2.75)

Adding the boundary condition to Equation (2.74) expresses the total radiance reaching x from
direction w as:

b
L(x4w) :/ T(x 5 x1)L(x— —w)dt + T(x<xp)L(xp— —w), (2.76)
0
see Figure 2.12 for an illustration of some of the terms. By expanding the exitant radiance

functions and writing them in terms of emmission and incident radiance, we can emphasize the
recursive nature of the RTE:

b
L(xew) = /O T(x 5 x¢)Ka (x¢) Le (x¢ — —c0)dt

accumulated volume emission

+ /Ob T (x> x¢)Ks(x¢) /82 fr(—ws—w')L(x; ') dw'dt

accumulated volume in-scattering

+ T(x>xp)Le(xp = —w)

attenuated surface emission

+ T(x<xp) /82 fo(—wxpw') L(xp ') (n(xp) - ') d’ (2.77)

attenuated surface scattering

2.7.2 Sensors

When rendering a scene, we do not necessarily need to find the equilibrium radiance at all
points of the scene, but rather in a small subset that is visible to the camera. The camera can
be represented by a two-dimensional sensor that measures the radiance incident from a specific
cone of directions. Our goal is to integrate the incident radiance over the sensor’s pixel area A,
and over the aperture () of the camera. The measurement I can be written as:

I:/AP/QW(xew)L(x%w)dwdx, (2.78)
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Figure 2.12: Illustration of some of the terms from Equations (2.76) and (2.77).

where W (x —w) is the sensor response function. At this point, we can simply plug in the recursive
formulation of equilibrium radiance from Equation (2.77). One disadvantage of this formulation
is the recursive “explosion” of the integrals. In the next section, we introduce an alternative, yet
equivalent formulation that avoids this problem.

2.7.3 Path Integral Formulation

Path integrals were pioneered by Feynman and Hibbs [1965]. Veach [1997] adapted the path
integral framework to light transport between surfaces and Pauly et al. [2000] extended this work
to participating media. The main idea is to hide the recursion and express the light transport as
an integral over all possible paths.

The first step is to extend the three-point formulation of the LTE (cf. Equation (2.24)) to account
for volumes. Alternatively, one can also derive it directly from the RTE (cf. Equation (2.76)). We
skip the derivation here for brevity and refer interested readers to Appendix A.1. The resulting
three-point formulation of the RTE is a Fredholm integral equation of the second kind:

Lix—w) = Le(x—w) + /1R3 flwx+w)G(xy)T(x<y)V (x> y) Ly = x)du(y). (2.79)

The above equation unifies the notation across surface and volumetric points by using several
generalized terms; the generalized emission L,:

Le(x—w) if x €9V
Ka(x)Le(x = w) ifxeV,

Le(x—w) = { (2.80)

the generalized scattering function f:

| fs(xy<z) ify € dV
fxeyoz) = { frixeyez)rs(y) ifyevV, (28D)
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the generalized geometry term G:

R Dyx(y)D
G(x<ry) |iyz yy|(2x), (2.82)
B n(x) - ﬁ if x € 9V
Dx(y) = { . y fxcV, (2.83)

and the generalized differential measure du(x):

[ dA(x) if x €0V
dp(x) = { dV(x) ifxeV. 284)
Path Space. Let Py be the set of all paths of length k:
Pr = {x =x0X1...Xg; X0, X1,...,Xg € ]R3}, (2.85)

where 1 < k < o0 and ¥ is a single path of length k. For any subset D C P we define the product
measure as:

pe(D) = [ du(xo) - d(x), (2.86)
and the differential path measure as:

du(x) = dpu(xo) - - - dp(x). (2.87)

Given the definition of Py, we can define the path space P, i.e. the space of all paths of all possible
lengths, as:

P=J P (2.88)
k=1

The measurement I from Equation (2.78) can now be expressed as a single integral over the path
space:

I= ' Pfj(f)dy(f), (2.89)

where the integrand f; is known as the measurement contribution function.

We shall now define f;. By combining Equation (2.76) and Equation (2.78), and then recursively
expanding the exitant radiance (see the full derivation in Appendix A.2), we can identify the
terms whose product is known as the throughput T of the path. The throughput consists of the
generalized scattering functions (one for each intermediate vertex of the path) and the general-
ized geometry, transmittance, and visibility terms (one for each path segment). See Figure 2.13
for an illustration. For a path connecting vertices x; and xy, the throughput reads:

k-1
T.oxi) = [T [fxict=xi—=xit1)G(xi—1 %) T(xi—1 %)V (Xi—1 > ;)]
=1
G (X1 x¢) T (X1 3 X5) V (X1 4 Xc). (2.90)
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Le(x0 =) flxo—=x1—=x2) f(x1—=x2—x3)  f(Xk_2—Xk_1—Xk) Wk k1)
O O O cee O O
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T(xg+>x1) T(x1¢x2) T (Xg_1 4> Xx)
V(xo+rx1) V(x1 ¢ x2) V (Xk—14> Xk)

Figure 2.13: Illustration of terms defining the measurement contribution function from Equation (2.91).
The product of the f, G, T, and V terms is commonly referred to as the path throughput.

With xg and x; being points on a light source and on the sensor, respectively, the measurement
contribution function can be succinctly written as:

I](f) = tg(X()%Xl)T(Xo...Xk)W(Xk%Xk_l), (2.91)

2.7.4 Operator Notation

The transport of light, after it is emitted and until it gets absorbed, consists of two alternating
processes: scattering on surfaces and in media, and propagation (along straight lines) between
individual interactions. It is often convenient to express these steps using an operator notation.
The three operators defined in the following paragraphs are linear relations, that act on input
functions producing new instances of these functions. We adopt the surface operators introduced
by Arvo et al. [1994] and extend them to account for interactions with participating media.
Although the operators can be applied to arbitrary functions, which are defined on ray space,
we skip the formalism and define them directly on the radiance function.

Local Scattering Operator. The local scattering operator® K takes the incident radiance L(x < «')
at a point x and transforms it into the exitant radiance L(x — w):

(KL) (x> w) = /Szf(w<—x<—w’)L(x<—w’)dw’l. 2.92)

Note that for x € 9V, the projected solid angle dw'* = (n(x) - ') dw’ accounts for the orien-
tation of the surface w.r.t the direction of incidence w’. For x € V, the dot product vanishes,
i.e. dw't = dw'. K is a local operator in the sense that the relation of the exitant to the incident
radiance is defined for each point x € (V UdV) in isolation, independent of all other points.

Propagation Operator. The transport of radiance between two interactions is described by the
propagation operator’ G. Given a point x and a direction w, the propagation operator expresses
the incident radiance L(x <— w) as the integral of the exitant (emitted or in-scattered) radiance
along the ray (x,w), plus the attenuated exitant radiance emitted or scattered from the nearest

8While Arvo et al. use the term local reflection operator, we prefer the more general term local scattering operator as it better
represents media scattering and surface transmission.

9Similarly to Veach [1997], we prefer the name propagation operator instead of the term field radiance operator used by Arvo
et al. [1994]
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surface point x:

b
(GL)(x+w) = / T(x4>x¢)L(xt = w)dt + T(x<>xp)L(xp — w), (2.93)
0
where x; = x4+ tw, x, = x + bw, and b is the distance to the nearest surface visible along w.
More informally, G takes all radiance exitant from volumes and surfaces and transports it to x
attenuating it by the corresponding transmittance.

Transport Operator. The transport operator T combines G and K transforming one exitant radi-
ance function L(x — w) into another exitant radiance (TL)(x — w) as a result of a single light
bounce:

(TL)(x—w) = (KGL)(x = w) (2.94)

Whenever it does not introduce ambiguity, we will drop the functional parameters and denote
the exitant radiance as L .

2.7.5 Neumann Series

With the help of transport operators we can express Equation (2.79) in terms of exitant radiance
and write it succinctly as:

L=L.+TL, (2.95)

stating that the exitant equilibrium radiance is a sum of the emitted and transported radiance.
Equation (2.95) clearly reveals the recursive nature of solving the radiative transfer. By recur-
sively expanding the equation:

L=Le+TLe+TLe+..., (2.96)
we obtain the Neumann series:
L=Y T'L. (2.97)
k=0

In order to assess the convergence of the Neumann series, it is necessary to define the operator
norm, which for a linear operator S reads:

IS]l = sup [Sh]|. (298)
Iml<1

For scenes containing only reflective surfaces, Arvo [1995] proves that || T|| < 1 if all BRDFs are
symetrical and energy conserving. Additionally, if there is at least one BRDF with albedo < 1,
then ||T|| < 1, which is a sufficient condition for the Neumann series to converge to a finite value.
This formalizes our discussion from Section 2.5.1 on the need for energy conserving distribution
functions to ensure convergence of global illumination algorithms.

In his thesis, Veach points out that if the scene contains refractive surfaces, then || K]||, and thus
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also || T||, are no longer bounded by 1. Precisely:

2
Ul
K| < 5%, (2.99)

min

where 72,,, and 175“-71 are the maximum and minimum refractive indices present in the scene,
respectively. This stems from the fact that radiance can increase when refracted into an optically
thicker medium. Fortunately, the condition || T|| < 1 is not strictly necessary to achieve conver-
gence. As shown in [Veach 1997], a weaker condition | T¥|| < 1 for some k > 1 is sufficient,
i.e. as long as the radiance function decreases after a certain number of bounces, the Neumann
series converges.

2.8 Evaluation of the Radiative Transfer Equation

In order to compute a realistic image of a virtual scene, we need to find the equilibrium radiance
at points that are visible to the camera. Optimally, we would like to obtain a closed-form func-
tional representation defined over all such points; however, this is possible only in very simple
and mostly uninteresting scenes. We thus need to resort to numerical recipes. Since the number
of (infinitesimal) points that are visible to the camera is infinite, Dutré et al. [2006] formulate
the problem as finding the average equilibrium radiance over a number of point sets. The com-
putation thus simplifies to finding the radiance only for a few representatives whose combined
contribution defines the radiance for all points in the set. The exact definition of the point sets
is dependent on the rendering algorithm. In the following, we briefly outline some of the tech-
niques developed for solving the light transport and the radiative transfer equation in particular.
For an overview of other rendering algorithms please refer to Dutré et al. [2006] and Pharr and
Humphreys [2010].

2.8.1 Analytic Integration

The lack of computational power in the early years of computer graphics forced researchers
to derive analytic solutions to the integro-differential transport equations. Many of those were
adopted from the heat transfer literature, which provides more than 300 form-factors'® that de-
scribe the transport of energy between surfaces of various geometric primitives, ranging from
infinitesimal elements to shapes such cones or cylinders. A collection of these form-factors can
be found in Howel et al. [2010]. We will now focus on analytic techniques that take into account
participating medium.

In certain situations, some terms in the RTE (cf. Equation (2.77)) can be expressed in a closed
form. For instance, both emission terms yield analytic expressions in homogeneous media. In
some cases, we can integrate even the in-scattered radiance analytically. This term of the RTE is
often referred to as the airlight integral.

Lecocq et al. [2000] proposed an angular reformulation of the airlight integral for point light
sources. Instead of integrating along the length of the ray, they integrate along the angle between
the two lines that connect the point light to the start and end points of the ray. By expanding the

1Tn the heat transfer literature, these are often called configuration factors or geometric factors.
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reformulated integral into a Taylor series they obtain an analytic approximation of the airlight
integral. Sun et al. [2005] further simplified the angular formulation and presented a semi-
analytic model, which does not require expansion into a Taylor series, but relies on precomputing
and tabulating the integrand. Both of the previous approaches are limited to homogeneous
media with isotropic phase functions and point lights. Pegoraro and Parker [2009] derived the
first fully analytic solution to the airlight integral, and further extended the technique to handle
anisotropic phase functions and light sources with axially symmetric emission profiles [Pegoraro
et al. 2009]. The same authors then extended the technique to support arbitrary phase functions
and emission profiles [Pegoraro et al. 2010; 2011]. A common drawback to these approaches is
that the phase function and the emission profile have to be expanded into a Taylor series, which
makes the evaluation of the anti-derivative fairly expensive.

All of the aforementioned analytic techniques assume full visibility between the point light and
the camera ray. To overcome this major limitation, Biri et al. [2006] employ volumetric shadows
to identify segments of the ray that are fully visible, and break the airlight integral into a sum
over these segments. Another option is to employ the analytic solution only as a control variate
and sample the airlight integral numerically. The resulting images suffer from noise only in
regions where the camera rays are partially occluded.

2.8.2 Monte Carlo Integration

Finding an anti-derivative can be often complicated or even impossible. In such cases, we have
to employ numerical integration, i.e. we sample the value of the integral over a finite set of
points and average the obtained values. Quadrature and cubature rules distribute these points
uniformly using regular grids, and are known to be most efficient on low-dimensional integrals.
They can be extended to multiple dimensions by recursively expanding the one-dimensional
integration; however, as the number of dimensions increases, the number of evaluations of the
integral grows exponentially. To overcome the curse of dimensionality, we can instead evaluate
the integral on a set of multi-dimensional points. When these points are defined using a ran-
dom or quasi-random sequence, we talk about Monte Carlo (MC) or quasi-Monte Carlo (QMC)
integration, respectively.

The most important and distinctive property of Monte Carlo methods stems from the central
limit theorem. Given a sequence of N independent and identically distributed random variables
X1, X3, ..., Xy with common mean p and standard deviation o, the average of these variables:

_ 1 N
Xy = N Y X, (2.100)
i=1

has approximately normal distribution (i, 0/v/N). An important observation here is that X; does
not have to be normally distributed; the averaging works for any sequence of random variables
as long as they have a well defined y and ¢. Informally, the central limit theorem says that by
increasing N, we narrow the normal distribution of the average. In the limit, i.e. for N — oo,
Xy =pand o =0.

Consider a multi-dimensional integral F of a function f defined over a domain D:

F— /D F(x)dx. (2.101)
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In order to estimate the value of F, we define an estimator (F) that approximates F by averaging
the value of f on N randomly chosen points from D:

N 14 N
Fr(FY) = 5 ) f(X0), (2.102)
where V is the size of D:
V= / dx. (2.103)
D

The estimator (FN) itself is a random variable, whose value depends on the number of sampled
points and their distribution. For a set of uniformly chosen points (i.e. p(X;) = 1/V) it can be
easily shown that the expected value of (FV) equals to F:
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We can also express the variance:
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and the standard deviation of the estimator:

o [(FM)] = \}Na [J;gg] . (2.106)

The above equations highlight two important properties of Monte Carlo estimators: first, the
estimators converge at the rate of O(N~1/2) (i.e. to reduce the error by a factor of 2 we need to
draw 4x more samples), second, the variance of the estimator depends on the probability p(X),
which is used to draw the samples. In many cases, we have some a-priori information about the
integrand, which can be used to determine a suitable distribution for choosing the samples.
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A Brief History of Monte Carlo Methods.

Monte Carlo methods were originally developed in 1940s in the Los Alamos National Laboratory
to numerically verify and improve designs of thermonuclear weapons. The code name “Monte
Carlo” was proposed by Ulam and von Neumann to emphasize that these simulations involve
some sort of random decisions, as do the games in the famous casino of Monte Carlo. The funda-
mental paper describing the Monte Carlo method was published by Metropolis and Ulam [1949]
in 1949; however, this was not the first time when random sampling was used in calculations.
In 1777, Comte de Buffon proposed an experiment that involved dropping a needle many times
on parallel lines to probabilistically estimate the value of 7r. In order to generate random num-
bers, Lord Kelvin drew slips of paper out of a glass jar when studying kinetic energy of gases.
The initial application of Monte Carlo sampling to transport theory is sometimes attributed to
Fermi, who applied a similar approach to simulations of neutron transport in 1930s, but did not
publish anything on the topic. More information about the early applications and history of MC
sampling can be found in [Hammersley and Handscomb 1964, Kalos and Whitlock 1986].

Monte Carlo methods play an important role in transport and diffusion theory. Some parti-
cles (e.g. neutrons) penetrate deep into solid objects undergoing many interactions with the
medium inside. In order to simulate these, MC approaches create random walks that mimic
the transport of neutrons throughout the domain of interest. A survey of early MC techniques
for neutron transport was assembled by Spanier and Gelbard [1969]. The authors categorize the
approaches as collision (discrete) estimators and track length (continuous) estimators. Most of
these estimators construct random walks analogously to the underlying physical processes, i.e.
the random walks are terminated when the neutron is absorbed. A different family of estimators
can be derived from these analog processes by forbidding absorption [Gelbard et al. 1966, Spanier
1966]. Such non-analog random walks require to be terminated using some artificial termination
rule (e.g. Russian roulette), which can in some cases lead to a lower variance than with ana-
log estimators. Coleman [1968] verifies some of these estimators mathematically and Lux and
Koblinger [1991] provide a more up-to-date comparison of the different analog and non-analog
estimators.

Simulating the transport of photons in participating media shares many similarties to neutron
transport. One interesting example is the class of next event estimators (NEE) developed for
computing the energy at a given point [Kalos 1963]. These estimators compute the energy trans-
ported to the point detector explicitly after each scattering event. Such approaches however
suffer from a severe problem: since the detector is approximated by a point, the estimator con-
tains a (1/ dz)—singularity causing a theoretically infinite variance. Steinberg and Kalos [1971]
proposed to incorporate the (1/d?)-singularity into the PDF for sampling the scattering event,
which effectively cancels the original singularity and results in an unbiased estimator with finite
variance. An analogous sampling scheme, called the equi-angular sampling, has recently been
introduced to the field of computer graphics by Kulla and Fajardo [2012] to minimize the vari-
ance when estimating inscattered light from a point light along a ray. To reduce the degree of
the singularity, Kalos [1963] also proposed the once-more collided flux estimator, which adds an
additional scattering event and reduces the singularity to 1/d. Georgiev et al. [2013] propose an
efficient sampling strategy for this kind of light transport.

In the early years of computer graphics, Monte Carlo concepts were leveraged by Appel [1968]
who shot random light rays from light sources to estimate shadows and spatial intensity of light
on solid objects. Whitted [1980] took an opposite approach (sometimes referred to as back-
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ward ray tracing!!) by tracing rays from the camera and possibly extending them recursively
into paths if they hit specular surfaces. Cook et al. [1984] extended Whitted’s ray tracing to
support distribution effects, such as depth of field or motion blur, by stochastically integrating
over time and lens aperture. In 1986, Arvo [1986] proposed to trace rays recursively from the
light sources to synthesize caustics. In the same year, Kajiya [1986] formulated light transport
using a single integral equation (in principle Equation (2.20)) and proposed to solve it using
Monte Carlo sampling of paths. His path tracing became a de facto standard for computing ref-
erence solutions inspiring many of the follow-up publications. Lafortune and Willems [1993]
and Veach and Guibas [1994] independently proposed to combine path tracing and light trac-
ing in a unified bidirectional tracing framework, for which Veach and Guibas [1994] devised a
number of strategies to properly weight the different estimators. The same authors then applied
Metropolis-Hastings algorithm to light transport [Veach and Guibas 1997] to amortize the cost
of constructing paths by perturbing those with high contribution to construct new ones. Several
authors extended this technique to further improve the convergence in specific situations [Cline
et al. 2005, Jakob and Marschner 2012, Kaplanyan and Dachsbacher 2013b, Lehtinen et al. 2013].

Unbiased vs. Biased Estimators

The variance of Monte Carlo estimators can be further reduced by correlating the estimates
and/or caching and reusing results over several queries. Examples of such algorithms include
irradiance caching [Ward et al. 1988], volumetric radiance caching [Jarosz et al. 2008a], density es-
timation approaches [Jensen 1996, Shirley et al. 1995], or instant radiosity [Keller 1997]. These
approaches are better in suppressing noise; however, they generally introduce approximations
that bias the estimator. While unbiased estimators yield correct results on average, biased es-
timators systematically alter the result. If the estimator is consistent, the systematic error can
be made arbitrarily small by taking more samples; however, the convergence rate of consis-
tent rendering algorithms is often worse than in the case of MC approaches (e.g. progressive
photon mapping [Hachisuka et al. 2008b, Knaus and Zwicker 2011] converges at the rate of
O(N~1/3) [Kaplanyan and Dachsbacher 2013a] while path tracing converges at O(N~1/2)).

In his thesis [Veach 1997], Veach argues that unbiased estimators are preferred over biased ones,
simply because the error of the algorithm is guaranteed to manifestate itself as random variation
of the estimator, and thus easy to quantify: we just need to compute the variance of the sam-
ple. In contrast, the error of biased algorithms is generally hard to assess and the only robust
approach is to compare the results to those of an unbiased algorithm. There is no doubt that
unbiased algorithms have a certain advantage over biased ones; nevertheless, there are still situa-
tions when employing biased estimators makes sense, or is even the only viable option. Consider
for instance a scene consisting of a swimming pool with a wavy water surfaces illuminated by
a point light. When the scene is rendered using a pinhole camera, computing the illumination
at the bottom of the pool is generally impossible with unbiased path sampling techniques. This
is because the delta functions, i.e. the point light, the pinhole camera, and the specular wa-
ter surface, make the problem overconstrained for stochastic sampling. In contrast, consistent
methods can easily discover the corresponding paths and render an image that contains all light
transport, be it at the cost of a small error.

1 The terms forward and backward ray tracing are sometimes interchanged. Arvo [Arvo 1986] used the term backward
ray tracing for rays that are shot from the light source. In 1995, the author added an addendum to the paper regretting
the chosen terminology as this caused a lot of confusion. We shall thus use the term “forward” when talking about
rays shot from the light source, and “backward” for rays shot from the camera.
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Another example when biasing the computation is desirable are many-light algorithms. If for-
mulated without any systematic error, the estimator suffers from unbounded variance [Kollig
and Keller 2006]. Introducing a certain amount of bias, either by removing or spatially blurring
the energy, removes distracting artifacts and produces images that are visually more pleasing
than those obtained with the original unbiased formulation.

2.8.3 Finite Element Methods

The rendering algorithms described in the previous section focus on estimating the equilibrium
radiance over points that are visible to camera, and they are thus view-dependent. We shall also
mention algorithms that try to compute the illumination in world space in a view-independent
manner. The solution can be subsequently used for several camera positions or entire animations.
These algorithms first discretize the scene by tessellating the geometry into a finite number of
patches and then seeks for the equilibrium diffuse energy, which is defined by a set of linear
equations describing the exchange of light between individual patches. Since outgoing diffuse
illumination is well modeled by radiosity, finite element methods used for rendering are often
called radiosity algorithms [Cohen and Greenberg 1985, Goral et al. 1984, Nishita and Nakamae
1985].

The fact that the solution needs to be view-independent restricts the application to diffuse scenes
only. Many publications try to overcome this limitation by computing the view-dependent trans-
port separately [Smits et al. 1992], or by supporting more complex reflections [Aupperle and
Hanrahan 1993, Immel et al. 1986, Sillion et al. 1991, Wallace et al. 1987]. Researchers also
tried to adjust the tesselation to the structure of the light transport by importance-driven re-
finement [Smits et al. 1992], discontinuity meshing [Lischinski et al. 1992], or clustering [Smits
et al. 1994]. Rushmeier and Torrance [1987] extended radiosity methods to handle participating
media. There are also several approaches that combine finite element methods with MC sam-
pling, e.g. Monte Carlo radiosity estimates the coefficients for the linear equations by tracing light
particles [Pattanaik and Mudur 1993, Shirley 1990].

Despite many of these improvements, the cost of evaluating the light transport remains tied
to the geometric complexity of the scene. Applications of radiosity algorithms to high quality
rendering are thus today rare.



Chapter 3

Many-Light Methods

Education is man’s going forward from cocksure
ignorance to thoughtful uncertainty.

— KenNETH G. JoHNSON (1922-2002)

virtual scenes across many industries. The demand sparked numerous research activ-

ities resulting in rendering algorithms, which allow rasterizing virtual geometry into
a set of colored pixels. In this dissertation, we focus on synthesizing images that look virtu-
ally indistinguishable from photographs. There are different perspectives that one can take on
this problem, but in general, the goal is to solve the radiative transfer equation in either its full
complexity or in one of the simplified forms.

O ver the last few decades, we have been witnessing an increasing demand for visualizing

At the end of the previous chapter, we mentioned some of the Monte Carlo techniques that
evaluate the integro-differential equation by recursive sampling. Thanks to the central limit
theorem, these approaches yield correct results, on average, but the results often suffer from high
amount of noise. Several algorithms strive to overcome this and accelerate rendering by reusing
computation and/or correlating estimates. These techniques split the simulation of transport
between emitters and cameras into two phases. In the first phase, the algorithm distributes
information about (multi-bounce) illumination coming from emitters, and stores it in a form of
e.g. irradiance samples [Ward et al. 1988], a photon map [Jensen 1996], or a collection of virtual
point lights [Keller 1997]. The second phase is then responsible for connecting these samples
to the camera e.g. by shooting primary rays and estimating the density of photons. While the
scheme may seem convoluted, the great advantage of these algorithms is that they can reuse
results of the first part across multiple pixel queries, thereby reducing the variance.

Many-light methods, see Figure 3.1 for illustrations of the two phases, fall into this category.
The advantage of many-light algorithms is their simple, unified and adaptable solution to many
difficult rendering problems. The core insight is that the general light transport can be approxi-
mated by the simpler task of calculating direct illumination from many virtual light sources. This
gives many-light algorithms two distinct advantages. First, it provides a unified and straightfor-
ward mathematical framework for calculating global illumination. Second, it makes many-light
algorithms very adaptable: the same algorithm can be adjusted to meet a wide range of quality
and performance goals. For instance, by using fewer virtual sources, many-light methods can
produce biased, but artifact free images in a fraction of a second; this makes them attractive for
real-time rendering applications. On the other hand, by using sufficiently many virtual sources
with a highly scalable evaluation algorithm, any bias from the virtual source approximation
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(a) Generation of VPLs (b) Lighting with VPLs

Figure 3.1: Many-light algorithms operate in two passes: first, they distribute a number virtual lights, e.g.
virtual point lights (VPLs) (a), and then use them to illuminate the scene and by this approximate indirect
illumination (b).

can be reduced below the perceptible level. The algorithm then produces results comparable to
unbiased methods in less time and becomes appealing even for high-fidelity applications.

In this chapter, we provide a coherent summary of many-light rendering. The structure and
the content of the chapter is based on the state-of-the-art report by Dachsbacher et al. [2014].
First, we explain the fundamental concept of many-light algorithms in Section 3.1. Then we
describe the two important components: how to generate virtual lights and how to use them
to approximate global illumination, in Sections 3.2 and 3.3, respectively. Finally, we review
extensions addressing scalability and performance of many-light algorithms in offline and real-
time rendering in Sections 3.4 and 3.5, respectively.

3.1 Algorithm Overview

The basis for all many-light algorithms was established by Alexander Keller in 1997 in a paper
called instant radiosity [Keller 1997]. The algorithm makes a key observation that complex global
illumination can be approximated by direct illumination from a set of specifically distributed
virtual point lights (VPLs). Similarly to the original work, we will introduce the algorithm by
describing the method for surfaces only, and later generalize to include participating media as
a part of the precise mathematical formulation in Sections 3.2 and 3.3.

In principle, all global illumination MC methods evaluate light transport by constructing light
transport paths, along which light travels from light sources to camera sensors. Path tracing [Ka-
jiya 1986], for example, constructs paths by tracing rays starting from the camera. In order to
handle complex light transport more robustly, bidirectional path tracing [Lafortune and Willems
1993, Veach and Guibas 1994] traces sub-paths from camera as well as from light sources and
then (deterministically) connects them to form full paths.

Instant radiosity (IR) is a variant of bidirectional path tracing that constructs the two sets of sub-
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Figure 3.2: Illustration of terms involved in computing the contribution of a single VPL to a shading point.

paths in a specific manner. Recall the measurement contribution function from Equation (2.91),
for which we now define a Monte Carlo estimator:

o D& Le(xo—=x1) T (%0 - X)W (X = X_1)
<I](X)> - N i-1 p(XO . .Xk) ! (31)

where p(xg...xx) is the joint probability distribution for constructing the path. Keller’s key
observation here is that we can split the evaluation of the estimator into arbitrarily long light
paths xp ... x;_p and rather short! camera paths xx_1, x¢. A single light path can be then reused
to calculate illumination of many different points x;_; seen by the camera.

Specifically, instant radiosity precomputes a number of path prefixes of the form xp...x;_, and
stores their end vertices x;_; as virtual point lights. With each VPL i the algorithm also stores
the partially evaluated estimator from Equation (3.1), which is usually referred to as the “flux”
of the VPL:

1 Le(xo—=x1)T (X0 - Xk _2)
N p(Xo... Xk )

D; = . (3.2)
Additionally, we also store information necessary to use the VPL to “illuminate” or to “connect
to” a given point x;_1, i.e. to evaluate the following terms (see Figure 3.2):

F kX1 Xe2) V(X1 Xk 2) T(xk—1 49 Xpe—2) G(Xp_1 43 Xp_2) f (Xp—1 4 Xp_2 6 X¢_3). (3.3)

This includes a reference to the scattering function at the VPL location x;_,, the direction towards
Xi—3, and the local tangent frame if x; resides on a surface. In practice, it is often assumed that
the scattering function at the VPL location is view independent (i.e. Lambertian if x;_, € 0V
and isotropic if x;_, € V). In this case, we do not need to store the incident direction and we
can premultiply the VPL “flux” [W] by the value of the scattering function [sr!], to obtain the
VPL “intensity” [W.sr™!]. Tt is often simpler and less error-prone to think about VPLs in terms
of partial evaluations of the estimator in Equation (3.1) rather than in terms of flux or intensity.

In general, many-light algorithms consist of two phases (see Figure 3.1 for illustration):

Phase 1: Generation of VPLs
First, a large set of light sub-paths with arbitrary length is generated and stored. For each
vertex of these sub-paths, the local geometric and material information and the current
“flux” (i.e. emitted radiance from the light source multiplied by the path throughput to
the vertex, divided by the probability density of constructing the path to that point) is

n case of the primary ray hitting a specular or highly glossy surface, some variants of IR extend the camera path until
it reaches a diffuse or moderately glossy surface. The camera path can thus consist of more than two vertices.
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recorded. The intention is that the data stored for each vertex suffice to compute the
outgoing illumination scattered from this vertex into any direction. If this is true, we can
discard the notion of the original path and instead model the vertex as an unusual type of
point light source. Since these do not correspond to any physical light sources in the scene,
we call them virtual point lights.

Phase 2: Lighting with VPLs
In order to complete the IR algorithm, camera sub-paths are constructed for each pixel in
the second phase. Since the light sub-paths were arbitrarily long, it is sufficient to consider
only length-one camera paths. Then, like other bidirectional algorithms, IR connects ver-
tices of these camera sub-paths to vertices of the light paths to form full paths. This step
amounts to computing direct illumination of directly seen surfaces due to the VPLs.

The two phase IR algorithm is often more efficient than general bidirection methods for two rea-
sons. First, since each VPL is used to illuminate surface points seen through all (or many) image
pixels, the effort invested into generating the VPLs is well amortized. Additionally, the use of a
single set of VPLs to illuminate all surface points produces correlated pixel values. This property
is extremely efficient in visually suppressing noise, which is typical for traditional Monte Carlo
approaches that build independent paths for each pixel. Note that this latter advantage has little
to do with reducing numerical error — it is purely of perceptual nature.

The original instant radiosity method [Keller 1997] was not the end-all solution to the global
illumination problem. Its specific strategy for constructing transport paths has advantages as
well as drawbacks. Common to most variants is that they are relatively simple to implement
and quickly yield visually pleasing results at predictable rendering costs. On the other hand,
IR methods are prone to splotchy artifacts (imagine the entire light energy in a scene contracted
to few VPLs), and have difficulties with high frequency global illumination, e.g. in scenes with
highly glossy surfaces. We elaborate on these problems later, point to publications that try to
overcome them, and describe our original solutions.

3.2 Generation of Virtual Point Lights

In this section, we detail the first phase of the algorithm, and describe a common random walk
procedure used to distribute VPLs. We also discuss improvements that were developed to direct
the VPLs into visually important parts of the scene.

3.2.1 Random Walk VPL Distribution

The most common approach to generate VPLs is to distribute them using several random walks.
Indeed, we can use the same particle tracing procedure as for distributing photons in photon
mapping [Jensen 1996]. We start by tracing N light paths, which originate at light sources,
creating M VPLs; one at each bounce (vertex) of the light path. We proceed in the following
steps:

1. Sample the first vertex. The first vertex xo we create on a light source. Usually, x¢ is sam-
pled from a PDF p(xp) that is proportional to the radiant exitance of individual emitters.
We also initialize the vertex index j to 0.
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Figure 3.3: This illustration shows the terms that are required to compute the “flux” of a VPL during the
construction of random walks.

2. Sample the next path vertex. Then we sample direction w; from a PDF p(w;) proportional
to the directional emission distribution of the light source (for the first path vertex, j = 0)
or to the generalized scattering function (for other vertices, j > 0). In scenes without
participating media, this direction uniquely determines the next path vertex. To account
for media, we need to sample the free path ¢; along the ray r;(t) = x; + fw;, i.e. how far
the particle travels before interacting with the medium. Please refer to Section 2.6.8 for
details on how to sample the free path. If the sampled distance extends beyond the nearest
surface along wj, the next path vertex x;;1 will be the corresponding surface intersection
point. Otherwise, the next vertex resides in the medium.

3. Create a VPL. A virtual point light is stored at the position of the generated path vertex
xj11. The “flux” of the VPL is calculated as:
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As mentioned before, for every VPL we also store a reference to the scattering function f at
the VPL location x;, 1, the incident direction wj, and the local tangent frame if x;;1 € JaV.

4. Terminate or continue the path. Use Russian roulette to terminate the random walk with
probability (1 — g;11), where the survival probability g;,; is usually proportional to the
albedo of the surface or volumetric point x; 1, or the throughput of the path. If the random
walk survives the Russian roulette, set j := j + 1 and go to step 2.

After finishing all random walks we divide the “flux” of each VPL by the total number of
generated light paths N. Note that the “flux” of the VPLs created by the above procedure
exactly corresponds to all the terms in Equation (3.2); see Figure 3.3 for illustration.

When the scene does not contain any participating media, we can simplify the random walk
procedure by omitting the free path sampling. The generated path vertex x;;1 is always on the
nearest surface and the transmittance T(x; > x;;1) and the PDF p(t;) equal to 1 and cancel out.

3.2.2 Improved VPL Generation

The random walk procedure described previously does not take into account the position of the
camera. It may thus generate many VPLs with only a small contribution to points in the view
frustum. The problem becomes even more prominent in large environments where the camera
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looks at a small part of the scene. Additionally, the density of VPLs generated by the basic VPL
generation algorithm along concave geometry is usually insufficient to faithfully render local
interreflections. In this section, we briefly discuss various approaches developed for generating
VPLs where they are most needed for a given camera view.

Rejection of Unimportant VPLs.

A straightforward approach to avoid VPLs with negligible contribution is to probabilistically
reject the unimportant ones. The algorithm, as proposed by Georgiev and Slusallek [2010],
generates many candidate VPLs using the previously described random walk procedure, but
keeps only those with significant contribution to the entire image. The authors first estimate the
average VPL contribution ®, by creating a number of pilot VPLs and rendering a low resolution
image. Then they generate candidate VPLs and for each candidate they estimate its contribution
®; by calculating the light it delivers to a few pixels of the image. The candidate is accepted
with probability:

[ @
pi=mm{®;+e,1}, (3.5)

which is proportional to the ratio of the actual VPL contribution to the average contribution. If
accepted, the VPL flux is divided by p; to ensure unbiasedness. This approach is essentially a
Russian roulette driven by the relative expected contribution, which produces a set of VPLs with
approximately the same contribution to the image.

Metropolis Instant Radiosity.

The rejection sampling approach described above is simple but suffers from an important dis-
advantage: many candidate VPLs may need to be generated before one VPL is accepted. To
create VPLs that are relevant to the camera straight from the beginning, Segovia et al. [2007]
propose to replace the standard VPL tracing by a Metropolis-Hastings sampler. Consider a path
that connects a light source to the camera. As discussed in Section 3.1, the second vertex from
the camera can be interpreted as a VPL. We can now use the Metropolis-Hastings procedure,
as in the Metropolis light transport algorithm [Veach and Guibas 1997], to explore the space of
all possible light paths by proposing and probabilistically accepting path mutations. Every time
a path is mutated, the second vertex from the camera of the mutated path yields a new VPL.
Segovia et al. [2007] shows that all VPLs created in this way contribute the exact same total flux
to the image.

Though very different, both the VPL rejection algorithm [Georgiev and Slusallek 2010] and
Metropolis Instant Radiosity [Segovia et al. 2007] generate VPL sets where each VPL has at
least roughly the same contribution to the image. From this, we can expect that the VPL sets
generated by both algorithms will be of similar quality. For complex scenes, where light needs to
bounce many times to reach the camera, the rejection algorithm may perform poorly because it
will reject many VPLs. On the other hand, while the VPL rejection approach is trivial, Metropolis
Instant Radiosity requires a substantial implementation effort. Finally, as the VPL distribution
is driven by the contribution of VPLs to the entire image, none of the two algorithms addresses
glossy interreflections.



3.3 Lighting with Virtual Point Lights 49

Creating VPLs from the Camera.

The density of VPLs distributed by the generation algorithms discussed so far is usually insuf-
ficient to faithfully render local interreflections in geometric cavities. To deal with this problem,
it may be more appropriate to distribute the VPLs by tracing paths from the camera instead
of starting at the light sources. This approach is likely to produce VPLs in locations important
for the image. The idea of generating VPLs by tracing paths from the camera appeared first
in [Segovia et al. 2006a] under the name Bidirectional Instant Radiosity. It was later also used
by Davidovi¢ et al. [2010], who refer to the VPLs generated from the camera as local VPLs (as
opposed to global VPLs, generated by tracing paths form the light sources).

3.3 Lighting with Virtual Point Lights

Once the VPLs are generated, many-light algorithms use them to illuminate the scene, i.e. to
calculate the outgoing radiance L(x;_1 — Xi) scattered from points x;_1 in the view frustum
towards points x; in the camera. This amounts to summing over all M VPLs and adding together
their “flux” ®; weighted by the terms from Expression (3.3). The estimator of L(x;_1 — x;) reads:
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where x;;72 is the position of i-th VPL.

Although the equation above—the core part of many-light methods—is fairly simple and can be
evaluated efficiently, closer inspection reveals the major problem of many-light algorithms. The
geometry term G(x<y) contains a (1/d?)-singularity with d representing the distance between
the shading point and the VPL (see Equation (2.82) for definition). Since the distance can be
arbitrarily small, the contribution of a VPL to a shading point, and thus the variance of the
estimator, is possibly unbounded. This is in a sense the same problem as in a naive bidirectional
path tracing that does not employ a proper weighting of multiple estimators. The closer the two
vertices being connected are, the higher the value of the sample. As a result, some pixels in the
resulting path-traced image are very bright.

With many-light algorithms, the (1/d?)-singularity stands out even more clearly than in naive
bidirectional path tracing. This is because we correlate the estimates by connecting all shad-
ing points to the same set of VPLs. Note that the correlation itself does not compromise the
mathematical correctness of the algorithm, i.e. the estimation is still unbiased. However, we
ultimately trade noise for structured artifacts, which, thanks to the (1/d?)-singularity, show up
very clearly as high-intensity splotches, and are often more distracting than stochastic noise (see
Figure 3.4.a). Since the splotches heavily degrade the quality of rendered images, we devote the
next few sections to existing techniques that try to avoid them.



50 3 Many-Light Methods

(a) Unbounded VPLs (b) Bounded VPLs (c) Unbiased solution

Figure 3.4: Adding the full contribution of each VPL leads to high-intensity splotches (a). When the
contribution is bounded (b) these artifacts disappear; however, the rendered image becomes locally darker
than the ground-truth (c).

3.3.1 Bounded Estimation

A straightforward and popular approach to suppress the bright splotches is to bound the ge-
ometry term to a user-defined maximum b. By bounding® we guarantee that the geometry term
does not exceed b, no matter how close the shading point to a VPL is. This technique was used
already in the original instant radiosity method [Keller 1997], where the bounding occurred as
a consequence of implementing the method in hardware, which at that time clamped all color
values to (0,1). Let us now define a bounded geometry term Gy(x<>y):

Gy(xey) = min(G(xey),b). (3.7
By substituting G, (x++y) for G(x+>y) in the estimator from Equation (3.6):
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we avoid the structured artifacts; however, we partly suppress short distance light transport, and
thus obtain a solution that is biased. Images rendered with the bounded geometry term suffer
from artificial darkening in regions with locally concave geometry, such as corners and cavities
(see Figure 3.4.b for examples). Furthermore, selectively suppressing light transport can have a
severe impact on material appearance [Kfivanek et al. 2010], and should be in such cases either
avoided or compensated for.

2Sometimes also called clamping.
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3.3.2 Bias Compensation via Final Gathering

One way to avoid changes in material appearance and to ensure unbiased renderings is to add
a correction term that recovers the missing light transport. Kollig and Keller [2006] express the
energy removed due to bounding, denoted B(x;_1 — Xi), as the difference between the transport
obtained with the original and the bounded geometry term:

B(xg—1—xk) = /]R3 f (X = X1 = Xp—2) V (X1 4 X—2) T (X1 2 X—2)
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where G, (x ¢+ y) is the residual geometry term transporting only the missing light:
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= max(G(x¢y) —b,0). (3.10)

In order to remove the singularity from Equation (3.9), Kollig and Keller propose to change the
domain of integration to the unit sphere S2. Raab et al. [2008] extend the formulation to support
participating media by adding an additional integral to account for points along the sampled
direction. Incorporating both of these changes yields:
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ér(xk—l Xk_2)

% G (xk—1 4> Xk—2) L(x—2 = X1 )dpt (X _2)
G(Xp—1 > Xg_2)

d Gr(xk_1¢0y)
= X 14w)D /T_Hif L(y = x¢_1)dtdw,
'/Szf(xk X1 @) Dy (@) | T(xe-142y) Ch 10y (y = x)—1)dtdw
(3.11)

where y is a point at distance t on a ray with origin x;_; and direction w; d is the distance to the
nearest surface seen along the ray, and Dx(w) is defined as:

B n(x) - w if x € dV
Dx(w) = { 1 if x € V. (3.12)

In order to obtain unbiased results, Kollig and Keller add the bias compensation term B(x;_1 — X¢)
to the bounded solution from Equation (3.8). As suggested in Equation (3.11), B can be estimated
via localized final gathering, i.e. by shooting rays towards nearby surfaces, calculating the out-
going radiance therefrom, and transporting back only such amount of energy that corresponds
to the removed VPL lighting.

Although the compensation is localized, the proposed implementation is fairly costly since
L(y — xg¢_1) is estimated using all light sources and all VPLs. As bounding occurs during
the compensation, the technique is recursive and quickly degenerates to path tracing (see Fig-
ure 3.5). Another pitfall is that G, is often zero during the MC integration and B(x;_; — X)
thus suffers from high variance. As a result, the cost of obtaining unbiased results with accept-
able amount of noise can exceed the computation time of the bounded transport by orders of
magnitude, which makes the algorithm less attractive for practical applications.
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region with bounded compensation vertex
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(a) Shading point xq (b) Compensation vertex x, (c) Compensation vertex x3

Figure 3.5: When computing the illumination of a shading point x;, the contribution of some VPLs (purple
arrows) is greater than a user-defined threshold b and thus bounded. To compensate for the energy loss,
Kollig and Keller [2006] propose shoot a ray to create a compensation vertex x;. If x; is inside the original
bounding region (marked with orange in (a)) they compute the illumination of x, (b) and transport only
the amount corresponding to the removed energy using the residual operator G,. As bounding occurs also
at xp, the technique is recursive and the path is terminated only when the new vertex is outside the region
where bounding occurred (c).

3.3.3 Bias Compensation using Local Lights

Similarly to the previously mentioned technique, Davidovi¢ et al. [2010] separate light transport
into the bounded, global component and local, residual component. The global component ac-
counts for long-distance light transport, while the local component corresponds to short-range
interreflections and indirect glossy highlights. The authors take advantage of the specific struc-
ture that the individual components exhibit, and design a solution tailored for each of them
independently. Specifically, they handle as much energy as possible in the global component
leaving only the local interreflections for the local component. This approach turns out to be
more efficient than a general global illumination solution.

The local component is handled by “local” VPLs, which are distributed by tracing paths from the
camera. Since the local VPLs are designed to calculate localized transport in regions with concave
geometry, each local VPL contributes only to a small tile of pixels around the pixel, through
which the path generating the local VPL was traced. In addition, the authors avoid occlusion
tests assuming full visibility between shading points and local VPLs. This approximation, which
is the main reason for the high efficiency in glossy scenes, is made possible by capturing most
of the energy (and indirect shadows) in the global component, and leaving just the localized,
but visually still important transport to the local component. The complete global illumination
solution is obtained by summing both components.

3.3.4 Avoiding the Singularity: Virtual Spherical Lights

Rather than compensating for the bias due to the bounded light transport, HaSan et al. [2009] try
to avoid the singularity in the first place. They notice that the intensity of bright splotches can
be exacerbated by glossy BRDFs, and the compensation can thus become arbitrarily expensive.
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This happens when the shading point and the VPL are aligned such that either of the two BRDF
terms (or both) have a large value in that direction. It is worth noting that while the artifacts due
to the geometry term are generally localized (occurring mostly in corners), the latter can happen
across large distances if the materials in the scene are sufficiently glossy.

The authors first introduce the concept of a photon light: a point light that distributes its energy
over surfaces within a surrounding spherical region of a certain radius. The name was inspired
by the connection to photon mapping, where each photon contributes its energy to nearby sur-
faces. In order to efficiently evaluate the contribution of a photon light, they use the visibility
of the original VPL for all points inside the photon light and also assume that surfaces around
the VPL are planar. This yields a new lighting primitive called the virtual spherical light (VSL).
The advantage of VSLs is that they replace the point-to-point evaluation, which is the source of
the (1/d?)-singularity, by an integration over the solid angle subtended by the spherical light.
Additionally, the integration averages the product of the two BRDFs over the solid angle, and
thus effectively avoids high intensity splotches due to sharp BRDFs.

The concept of a photon light introduces bias, which is similar to the systematic error of pho-
ton mapping with final gathering. However, unlike the straightforward bounding, it preserves
the energy by redistributing it spatially over nearby surfaces. VSLs can also be combined with
scalable many-light methods, e.g. Lightcuts [Walter et al. 2005] or Matrix Row-Column Sam-
pling [Hasan et al. 2007] that are described in the following section.

3.4 Scalability

In the preceding sections, we have discussed how VPLs are generated, represented, and evalu-
ated. In this section, we elaborate more on the last aspect in the context of truly many VPLs. This
is often critical as the accuracy of many light methods strongly depends on the number of VPLs
used. With only few VPLs, the illumination can be reconstructed only coarsely. While this may
be sufficient for small scenes or in real-time applications, generating high-quality renderings in
complex scenes requires capturing many detailed, highly localized, indirect illumination effects
such as glossy highlights, indirect shadows, and proximity color bleeding. Accurately simulat-
ing these effects may require thousands or millions of VPLs. Since the effects of individual VPLs
would often be imperceptible, a linear, brute force evaluation of Equation (3.6) for millions of
VPLs would be prohibitively expensive and inefficient. Instead, one would prefer an accurate
but approximate evaluation that requires far less computation. We will call algorithms scalable if
their cost increases slowly, or sub-linearly, with the number of VPLs used.

Alternatively, increasing scalability can be viewed as variance reduction. If an algorithm handles
a million VPLs while only spending the resources for few hundreds, this is equivalent to decreas-
ing the noise in the estimate while holding the amount of computation fixed. The main Monte
Carlo variance reduction techniques are stratification, adaptive sampling, and importance sam-
pling. The scalable algorithms discussed below are based on carefully combining stratification
and adaptivity, or caching of importance.
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(a) VPL clustering for shading point x; (b) VPL clustering for shading point x;

Figure 3.6: Scalable many-light algorithms can achieve sub-linear cost when evaluating VPL lighting. They
cluster VPLs adaptively to adjust the accuracy of the many-light evaluation. For example, a group of distant
VPLs might be replaced with a single brighter representative.

3.4.1 VPL Clustering

The methods discussed in this section exploit a common insight: within a large set of VPLs,
each VPL does not contribute equally. Many VPLs have low importance because they contribute
very little to a region of interest; for example if the VPLs are far away or occluded. However,
typically a small number of VPLs are very important, such as VPLs that contribute to a glossy
highlight, and these must be handled accurately. A general, scalable algorithm tries to exploit
this non-uniform VPL importance to reduce computation. It seeks to identify and evaluate all of
the most important VPLs while only sparsely evaluating the unimportant ones.

While the algorithms discussed below differ in how they estimate importance and select a set
of VPLs to evaluate, they all use the same framework. Each algorithm clusters similar VPLs
together. They choose a clustering that places unimportant VPLs in large clusters and important
VPLs in smaller clusters, see Figure 3.6 for an illustration. It is then assumed that VPLs within
a cluster are sufficiently similar that their aggregate effect can be approximated by evaluating
just a single, brighter, representative VPL. If the representative is chosen randomly from the
VPLs within the cluster and its power scaled appropriately, the sum of these representative
approximations is equivalent to a stratified, Monte Carlo evaluation of the path integral, where
only a single sample is drawn from the domain of each cluster. If these algorithms can find a
set of clusters—typically called a cut—that is much smaller than the number of all VPLs, the cut
approximation becomes a scalable alternative to brute force evaluation.

We will discuss several techniques based on constructing these cuts [Hasan et al. 2007; 2008, Ou
and Pellacini 2011, Walter et al. 2006; 2005; 2012] and one more method [Georgiev et al. 2012]
that chooses the most relevant VPLs for a shading point rather than clustering them.
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Lightcuts

Lightcuts [Walter et al. 2005] was the first practical, scalable many-light method. At each receiver
point where illumination needs to be computed, lightcuts generates a customized cut based on
analytic per-cluster error bounds and a perceptual metric. As a first pass the VPLs are first
organized into a binary tree based on spatial and directional similarity. To select a cut for a
receiver, we start with a trivial, coarse clustering, such as putting all the lights in a single cluster.
This corresponds to a cut consisting of only the root node of the light tree. Then we iteratively
select the cluster in the current cut with the highest error bound and refine it replacing it by its
children in the light tree. This process is repeated until the error bounds for all clusters in the cut
are below a perceptual-based threshold. The size of the cut is typically only weakly dependent
on the number of VPLs, resulting in very large speed-ups compared to a full evaluation as the
number of VPLs grows. The use of analytic error bounds also guarantees that the most important
VPLs are always found and evaluated, making the estimation robust. Arbree et al. [2008] extend
the lightcuts method for sub-surface scatterning. Davidovi¢ et al. [2012] describe a progressive,
GPU-friendly variant of lightcuts.

Multidimensional lightcuts [Walter et al. 2006] extends the domain of clusters and cuts to include
receiving points as well as lights, to achieve scalable performance across a much wider range
of effects. When computing a pixel, we really want the average illumination over a region
rather than its value at individual receiving points. For example, the region may extend over
an image space for anti-aliasing, over the aperture for depth of field, over time for motion blur,
and spatially for effects such a volume rendering. When rendering, these regions are typically
converted to many receiver points using sampling, but separately evaluating a cut for each
point is inefficient as they often have very different sensitivities to the lights and illumination
accuracy requirements. Instead, multidimensional lightcuts builds a hierarchy over all light-
receiver point pairs for a pixel and its cut is a partition of this much larger point-pair space. To
make this feasible, the point pair hierarchy, called the product graph, is implicitly represented as
the Cartesian product of a light tree and a receiver tree, which is also called the gather tree. The
cut selection process is similar to that in the lightcuts method in that it uses analytic per cluster
error bounds and refines the cut until a perceptual threshold is met. One major difference is that
cluster refinement can now choose between light or receiver refinement at each step. Overall this
technique greatly reduces the rendering cost when computing effects that require both many
receiver points per pixel and large numbers of VPLs.

Bidirectional lightcuts [Walter et al. 2012] extends the previous approach to handle even more
effects including glossy reflections, subsurface scattering, and short-range indirect illumination.
While its goals are similar to the bias compensation methods mentioned previously, it functions
by adding additional receiver points per pixel.

Matrix Row-Column Sampling

In contrast to lightcuts, which generates a cut per receiver point, matrix row-column sampling
(MRCS) [Hasan et al. 2007] computes a single, global cut for the whole image. Because the cut
generation is amortized over the whole frame, this approach has two advantages compared to
lightcuts.

1. As a measure of VPL importance, it replaces the error bounds, which may be expensive
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or unknown for general materials, with sparsely sampled direct estimates of each VPL's
image contribution. This allows MRCS to easily add material and light types (including
VSLs), and to include visibility information in the cut selection algorithm.

2. The VPL importance and the VPL contributions can both be estimated by using shadow
maps. By using graphics hardware to accelerate their calculation, MRCS can achieve very
fast, low-noise rendering.

Of course, there are some disadvantages: because the cut is computed once from sparsely sam-
pled data, MRCS is less adaptive than lightcuts, and may sometimes miss small features of the
VPL illumination, such as glossy highlights that affect only few pixels.

In order to compute the global cut, MRCS models the VPL evaluation problem as a large matrix
M. The rows of M represent the surface points visible through each pixel and the columns
of M represent VPLs. Each entry M(i, j) represents the fractional energy of the j-th VPL that
reaches the camera through the i-th pixel. The key insight of MRCS is that M is usually a highly
structured, often low-rank, matrix and can be well approximated by the reduced matrix R that
subsamples the elements of M. The MRCS consists of computing R, using it to compute a cut
and then using that cut to approximate the original matrix M.

The MRCS approach has also been extended to render full animations [HasSan et al. 2008], con-
catenating the matrices of the animation frames into a 3D array (tensor), and exploiting tempo-
ral coherence to drive the number of required cluster representatives even lower. Davidovi¢ et
al. [2010] propose a modification of MRCS called visibility clustering.

LightSlice

The lightslice [Ou and Pellacini 2011] algorithm combines the idea of locally adapted cuts from
lightcuts with the global optimization advantages of MRCS. The authors of lightslice noticed
that, while lightcuts can capture detailed illumination effects by recomputing a cut at each re-
ceiver point, MRCS demonstrated that many of these cut calculations waste effort recomputing a
shared set of global VPL clusters. The lightslice algorithm improves performance by identifying
these shared global clusters once and then reusing them as a starting point for local per-slice
cluster refinements. The lightslice algorithm works as follows:

1. Generate all the receiver points for an image and cluster them based on their geometric
proximity into groups called slices.

2. Select a representative receiver point from each slice and then run MRCS on the set of
all slice representatives. This forms both an initial, global cut for all slices and a reduced
matrix R describing the light transport of the slice representatives.

3. For each slice i, restrict R to a smaller matrix R’ that contains only the row for slice i and
the rows from other nearby slices. Iteratively refine the global clustering for i by using R’
to identify and split high-cost, local clusters to generated localized cuts for each slice.

By using localized per-slice cuts, lightslice is able to reduce the average cut size needed compared
to a single global cut while also reducing the chance that locally important VPLs will be missed
due to the sparse sampling. Also, by reusing an initial global cut as the local starting point, it
significantly reduces the cost of cut selection.
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3.4.2 VPL Importance Sampling

Georgiev et al. [2012] propose a different approach to improve scalability: they choose the most
relevant VPLs for any given position in the scene based on cached importance. In a preprocess,
the contribution of all VPLs is computed at a number of locations in the scene, and cached.
When calculating VPL contributions during rendering, the cached contributions at a few nearby
locations are used as a discrete probability distribution from which the most relevant VPLs are
sampled randomly.

All the aforementioned scalable approaches have greatly increased the effective number of VPLs
that can be used in many-light methods, and thus increased the achievable accuracy and image
quality. In the next section, we review techniques from the other end of the application spectrum
that puts more emphasis on interactivity and real-time use.

3.5 Interactive and Real-Time Applications

The obvious challenge in interactive and real-time rendering, compared to offline methods, is
the tight time budget. This expectedly restricts the number of virtual lights that can be created
and used (typically several hundreds to thousands), and also the types of materials that can
be faithfully rendered under such constraints. Conceptually, the main difference resides in the
computation of visibility, where rasterization is typically used instead of ray casting for VPL
generation and shadowing. The following sections address these aspects and also briefly touch
on temporal stability, which is crucial for plausible, interactive animations.

3.5.1 Rapid Generation of VPLs

In typical real-time scenarios, the render times are dominated by shading and shadowing costs,
and less by VPL generation. Since the VPL generation is relatively cheap and only a small
number of VPLs can be handled, any spatial indexing structure—even if unoptimized or subop-
timally built—is sufficient for tracing the few light paths, and should be used if available.

VPLs can also be created using rasterization. Similar to shadow maps, reflective shadow maps [Dachs-
bacher and Stamminger 2005] (RSMs) render the scene from a primary light source to capture
directly lit surfaces. In addition to depth, RSMs store also the position, normal, and reflected
flux. Every pixel, or a random subset of pixels, can be thus interpreted as a small light source and
serve as a VPL. A similar idea has previously been used to create virtual dipole light sources for
rendering translucent objects [Dachsbacher and Stamminger 2003]. In the original RSM paper,
the contribution of VPLs was accumulated for a low-resolution image and refined at edges dur-
ing upsampling. Dachsbacher and Stamminger [2006] later proposed to accumulate the lights’
contributions using deferred shading and with bounded regions of influence; they also intro-
duced importance sampling of the underlying RSM.

Ritschel et al. [2011] propose to choose VPLs from RSMs by estimating their contribution to the
image, and thus obtaining a probability factor to importance sample the RSM. In both cases,
longer light paths can be obtained by recursively creating further RSMs computed for the previ-
ously generated VPLs (used in [Ritschel et al. 2008]). Note that various approaches for casting
rays using rasterization or based on voxelization exist and can also be used to trace light paths.
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3.5.2 VPL Lighting for Interactive Applications

Although programmable graphics hardware is able to shade from virtually arbitrary many light
sources, many-light rendering is almost exclusively accompanied by deferred shading tech-
niques [Deering et al. 1988, Saito and Takahashi 1990]. Bounding the regions of influence of
VPLs (as in [Dachsbacher and Stamminger 2006]) to speed up shading is often not the preferred
solution as it removes light transported over larger distances. Instead, the shading signal is
usually subsampled and subsequently interpolated. To this end, most of the techniques em-
ploy interleaved sampling [Keller and Heidrich 2001], which has been first used for many-light
rendering by Wald et al. [2002]: shading of a single pixel is not performed using all VPLs, but
instead each pixel is lit only by a disjoint subset of VPLs. The reasoning is that neighboring
pixels often represent nearby and similarly oriented geometry and their shading would thus be
similar as well. The interleaved shading is then transferred across neighboring pixels in a post-
processing step using an edge-aware image filter. Segovia et al. [2006b] describe a GPU-friendly
implementation of interleaved sampling where the deferred shading buffers are reorganized
such that pixels lit by the same subset of VPLs are stored in the same tiled sub-buffer. Inter-
leaved sampling greatly speeds up the rendering; however, it is prone to aliasing artifacts with
highly detailed geometry and normal mapping, and problematic with glossy BRDFs.

Nichols and Wyman [2009, 2010] propose a hierarchical shading technique based on the obser-
vation that indirect illumination in regions with smooth surfaces varies slowly, while geometric
detail requires more shading evaluation. Their technique makes use of a min-max mipmap of the
depth buffer to detect discontinuities. Indirect illumination is then computed in multi-resolution
deferred shading buffers where smooth regions (little variation in the min-max mipmaps) are
shaded in low-resolution buffers, and detailed regions in high-resolution buffers. The resolution
pyramid is finally combined to the final image using an adapted, bilinear interpolation tech-
nique. Note that interleaved sampling approaches are orthogonal to shadow computation from
VPLs, while multi-resolution splatting assumes a smooth shading signal (i.e., it does not detect
shadow boundaries and thus blurs across them).

Further acceleration of the shading computation with a large number of light sources can be
achieved by tiled shading: the image plane is subdivided into tiles, and for each tile a list of light
sources potentially affecting the visible surfaces is built. Each tile can then be processed inde-
pendently without evaluating all light sources [Olsson and Assarsson 2011]. Olsson et al. [2012]
extended this idea and cluster light sources by their tile and depth.

3.5.3 Visibility Computation in Interactive Rendering

Whenever we compute shading from VPLs, we also have to determine whether the shading
point is actually lit or occluded. To this end, almost all interactive methods compute the
(hemi-)spherical visibility per VPL before shading. The original instant radiosity [Keller 1997]
employed a variant of shadow volumes, but almost all later implementations rely on shadow
mapping as this technique is robust, flexible, and its main disadvantage — jagged shadow edges
— is not crucial when the contribution of hundreds of VPLs is accumulated.

Computing the per-VPL visibility, or shadow map, is often the most time-consuming part of
interactive many-light implementations. One way to speed up this step is to avoid repetitive
computation and exploit temporal coherence. Laine et al. [2007] propose to keep VPLs for as
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long as they contribute to the image, and invalidate and reposition only few of them per frame.
Their method maintains VPLs for single-bounce indirect illumination only (a limitation which
could be relaxed when computing VPLs with ray casting), and it is restricted to static scenes, or
indirect light from static on dynamic geometry only.

A different strategy is to compute visibility less accurately, which has been shown to be sufficient
for indirect illumination in many cases [Yu et al. 2009]. Ritschel et al. [2008] compute low-
resolution, low-quality imperfect shadow maps (ISM): hundreds to thousands of shadow maps
are rendered in parallel from a point representation of the scene geometry. Since only a few
thousand point samples are used per each shadow map, the resulting maps contain holes and
need to be filled using an image-space heuristic. The point representation is precomputed, but
can be deformed with the scene to support animations. In a follow-up work, Ritschel et al. [2011]
describe how these point sets can be chosen in a view-adaptive manner, improving the quality
of the shadow maps. Holldnder et al. [2011] also address the many-view rendering problem
and present an incremental and GPU-friendly LoD algorithm, which can be used to compute
shadow maps. Micro-rendering [Ritschel et al. 2009a] handles visibility computation using a point
hierarchy and massively-parallel hybrid rasterization-raycasting technique to render water-tight
hemispherical images. It also supports warping of the hemisphere, as it was originally designed
for fast final gathering for both diffuse and glossy surfaces.

Recently, another approximate representation gained much interest: any scene geometry can be
voxelized allowing for simple ray marching to compute visibility. Voxelization itself is a large
research field, see Crassin’s PhD thesis [Crassin 2011] for an exhaustive overview.

3.5.4 Improving Quality and Temporal Stability

A crucial factor determining the quality of rendered images is the number of used virtual lights:
while a low number might be sufficient for (mostly) diffuse scenes, significantly more is neces-
sary for scenes with glossy surfaces [Kfivanek et al. 2010]. Moreover, VPLs are often generated
using random walks and even if the same random numbers are used, the generated VPLs can
have different locations or contributions if the scene changes. This leads to distracting tem-
poral flickering. Obviously the number of VPLs cannot be increased arbitrarily for interactive
scenarios and thus special techniques had to be developed.

One possible solution, orthogonal to incrementally updating VPLs [Laine et al. 2007], is to con-
sider a VPL not as a point light, but instead as an area light that represents indirect illumination
from a certain surface area. A straightforward approach to estimate the represented area is to
initially create more VPLs and cluster them before shading. The size of the cluster serves as an
estimate of the surface area, and this yields, together with the accumulated contribution of the
VPLs, a virtual area light [Dong et al. 2009]. Visibility from area lights can efficiently be evaluated
using soft shadow methods, e.g. [Annen et al. 2008]. When using RSMs, clustering can also be
computed directly in image space of the RSM [Prutkin et al. 2012].
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Chapter 4

Approximate Bias Compensation for
Rendering Scenes with Media

Truth is much too complicated to allow
anything but approximations.

— Joun voN NEUMANN (1903-1957)

the realism of virtual scenes. In landscape sceneries, the appearance of haze, clouds, or

smoke is caused by light that is scattered multiple times due to interactions with small
particles in the air. Since scattering occurs “everywhere” and continues until the light is absorbed
or leaves the medium, simulating such transport is very costly. A common simplification is to
consider transport that involves a single scattering event only. This already creates impressive
volumetric effects, such as light shafts piercing through tree canopies, but the simplification is
only valid for participating media with low albedo (i.e. relatively high absorption). In contrast,
multiple scattering is crucial for the appearance of highly scattering media, such as clouds.

P articipating media cause a wide variety of scattering effects that immensely contribute to

In this chapter, we present a novel method for high-quality, many-light rendering of scenes with
participating media. Our technique builds upon the algorithm proposed by Raab et al. [2008].
The authors take the original instant radiosity [Keller 1997] extended to compensate for bias due
to bounding [Kollig and Keller 2006] and demonstrate that such algorithm is capable of handling
scenes with participating media. The major difference here is that VPLs are generated also in
volumes and, in addition to illuminating surfaces, they illuminate the medium and approximate
thus effects of multiple scattering.

As described in Chapter 3, many-light algorithms feature several advantages: (1) they require
hardly any pre-processing; distributing VPLs by the means of random walks is a matter of
milliseconds, even for thousands of VPLs. (2) Rendering with VPLs is highly scalable and covers
wide application spectrum from interactive previews to high quality rendering with millions of
VPLs. (3) VPLs can rely on (deep) shadow mapping to quickly resolve visibility without the
need for additional, complicated structures (e.g. photon maps). All of these advantages hold
when extending the algorithm to account for participating media. The extra ingredient, added in
[Raab et al. 2008] on top of the original technique, is the combined single scattering from primary
light sources and VPLs, which adds the multiple scattering component.

As in the case of surfaces, illuminating media with point lights is prone to a singularity that
creates bright splotches in rendered images (see Figure 4.1.a). On surfaces, the product of the
two cosine terms in the numerator of G reduces the impact of the squared distance in the de-
nominator. The product accounts for the mutual orientation of the two surface points. In media,
this product is no longer present and G thus reduces to the inverse squared distance only. As a
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(a) Unbounded VPLs (b) Bounded VPLs (c) Bias compensation (d) Raab et al [2008]
49 minutes 49 minutes 8 hours 8 hours 49 minutes

Figure 4.1: Rendering of a rising smoke with (a) unbounded contribution (i.e. with G), and (b) bounded
contribution (i.e. with Gp). In (c) we show the bias compensation as proposed by Kollig and Keller [2006]
and extended by Raab et al. [2008] to participating media. Adding the compensation term (c) to the
bounded solution (b) yields unbiased results (d); however, at a significant additional computation cost.

result, the artifacts due to the singularity can be even more prominent and we need to bound the
geometry term more aggressively to remove the artifacts (see Figure 4.1.b). The bias compensa-
tion by Raab et al. [2008] recovers all the missing energy (see Figure 4.1.c), unfortunately, at a
significant computational cost and thus heavily decreasing the performance of the algorithm.

In this chapter, we study bias compensation in the presence of participating media and propose
the approximate bias compensation (ABC) [Engelhardt et al. 2012], which, unlike the compensa-
tion by Raab et al. [2008], increases the entire rendering cost by only a fraction of the bounded
solution. Our goal is to create a fast, high quality renderer. We seek an approach that can be
easily accelerated using GPUs taking advantage of their strong capabilities, such as fast cre-
ation of shadow maps, to efficiently resolve visibility between shading points and VPLs. In the
following, we present:

e an analysis of bias compensation, which quantifies the amount of energy recovered with
each additional bounce of the residual transport;

* a comparison of several sampling strategies for estimating the residual transport;
* two approximations that make the integration more efficient and GPU friendly; and,

¢ a progressive, GPU-based renderer for synthesizing images with heterogeneous media.

The rest of the chapter is structured as follows: we review the relevant previous work concerned
with rendering participating media in the next section. In Section 4.2, we investigate and ana-
lyze different integration strategies whose implementation is described in Section 4.3. Then we
present results that can be obtained with our technique in Section 4.4, and finally, we discuss the
limitations and possible improvements in Section 4.5.
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4.1 Previous Work

Since the previous work related to many-light rendering was discussed already in Chapter 3, we
devote this section to algorithms that are primarily targeting scenes with participating media.
We also omit references to techniques that are used as building blocks (e.g. for sampling the free
path or transmittance) and refer the reader back to Sections 2.6.8 and 2.6.7.

Path Tracing Approaches. Early rendering methods aiming at the radiative transfer in par-
ticipating media [Chandrasekhar 1960] were based on stochastic techniques (e.g. [Kajiya and
Von Herzen 1984]) and/or finite element methods (e.g. [Rushmeier and Torrance 1987]); see
[Rushmeier 1995] for an overview of the pioneering work. Many of the follow-up publications
were then inspired by the path integral framework [Feynman and Hibbs 1965] and sampling
strategies developed for neutron transport simulations [Gelbard et al. 1966, Kalos 1963, Spanier
1966, Spanier and Gelbard 1969, Steinberg and Kalos 1971]. Such examples include bidirec-
tional [Lafortune and Willems 1996] and Metropolis [Pauly et al. 2000] sampling, as well as
techniques building on the path integral formulation [PremoZe et al. 2003; 2004] for rendering in
the presence of participating media. These approaches are general, compute unbiased solutions,
and can easily handle arbitrary phase functions. The major drawback is the slow convergence,
especially in heterogeneous media, due to the costly sampling of free paths. Some algorithms
thus divide the integration domain into smaller regions with similar properties [Szirmay-Kalos
et al. 2011, Yue et al. 2010] allowing the free path sampling to proceed more efficiently.

Caching and Density Estimation Approaches. Several methods address the high cost of pure
Monte Carlo approaches by reusing or correlating the estimates. This can be achieved by caching
irradiance [Ward et al. 1988] or radiance samples [Kfivanek et al. 2005, Scherzer et al. 2012],
which has also been successfully extended to participating media [Jarosz et al. 2008a]. Similarly,
photon mapping [Jensen 1996] also samples and stores the distribution of light in the scene (in
the form of a photon map), but instead of interpolating the samples, it performs density esti-
mation to reconstruct the local flux density. Jensen and Christensen [1998] generalized photon
mapping to participating media. Jarosz et al. [2008b] improved their approach by finding all
photons along the length of each camera ray in one beam query, and later applied similar concept
to light paths turning entire path segments into photon beams [Jarosz et al. 2011a;b]. The benefits
of using lines (instead of points) to represent and to query the underlying quantity was con-
currently explored by Sun et al. [2010], who simulate single scattering and caustics by finding
nearly intersecting camera and light paths. Boudet et al. [2005] calculate the density estimation
in volumes via photon splatting and propose a GPU friendly implementation.

Several extensions seek to decrease the error caused by density estimation [Havran et al. 2005,
Herzog et al. 2007, Lastra et al. 2002, Moon and Marschner 2006], but ultimately, some amount
of bias remains. Progressive photon mapping [Hachisuka and Jensen 2009, Hachisuka et al.
2008b, Knaus and Zwicker 2011] and progressive photon beams [Jarosz et al. 2011b] eliminate
this error gradually by shooting and discarding photons in batches, while progressively refining
radiance statistics to converge to the correct solution in the limit. In spite of all the aforemen-
tioned improvements, density estimation approaches are still not very suitable for interactive
rendering, mainly due to splotchy artifacts on surfaces and in media, which go away only with
large numbers of photon points or photon beams.
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Single Scattering. In media with low density or low albedo, most of the visible effects are due
to single light bounce. In such cases, one can simplify the light transport and tailor the ren-
dering algorithm specifically to single scattering only. The integration can be then carried out
(semi-) analytically [Pegoraro and Parker 2009, Pegoraro et al. 2009; 2010; 2011, Sun et al. 2005].
Although closed form solutions are generally preferred over numerical recipes, the necessity to
handle the visibility independently [Biri et al. 2006], precompute a set of tables, or expand the
scattering function using Taylor series complicates the implementation and decreases the effi-
ciency of these techniques. Quadrature methods, such as ray marching, perform well in scenes
with limited depth especially when restricted to regions where shadowing occurs [Wyman and
Ramsey 2008]. Engelhardt and Dachsbacher [2010] observe that the amount of inscattered light
changes smoothly along epipolar lines. They detect shadow discontinuities along these lines and
place samples more intelligently to reduce the integration error. Baran et al. [2010] further im-
prove the quality via hierarchical integration. Monte Carlo integration of single scattering with a
suitable importance sampling [Kulla and Fajardo 2012] can also yield results with low variance.
When ported on graphics hardware, these techniques are capable of real-time performance.

Multiple Scattering. When the medium has high density and albedo, we can presume that
each photon gets scattered many times before reaching the camera. In such cases, one can
efficiently model the process of scattering using the diffusion theory [Fick 1855, Stam 1995]. This
approach is used intensively for rendering optically thick materials, such as marble, wax, or
skin. Jensen et al. [2001] introduced the diffusion dipole model, which analytically calculates the
amount of light transmitted between two points on a planar semi-infinite medium. To further
accelerate the computation, Jensen and Buhler [2002] proposed a hierarchical integration scheme.
In the case of human skin, the response of the diffusion dipole can be well approximated with
a set of normal distributions, which can provide real-time performance when implemented on
the GPU [d’Eon et al. 2007, Jimenez et al. 2009]. Donner and Jensen [2005] extended the model
to a multipole, and d’Eon and Irving [2011] suggested to quantize the diffusion, both obtaining
better quality than the original dipole. The major drawback of most diffusion-based approaches
are the strong assumptions about the geometry (e.g. planarity, semi-infiniteness, etc.). Recently,
Habel et al. [2013] proposed to combine diffusion with Monte Carlo sampling to better account
for the geometry, while retaining the benefits of the fast diffusion approximation.

A comprehensive overview of literature devoted to rendering scenes with participating media
can be found in [Cerezo et al. 2005].

4.2 Residual Light Transport

In this section, we study the energy recovered using the bias compensation technique by Raab et
al. [2008] (described in Section 3.3.2). Their approach is relatively costly as it requires recursive
ray tracing and access to all VPLs at every compensation vertex. We first analyze the underlying
Equation (3.11) and then derive several optimizations, sampling strategies, and simplifying as-
sumptions; all leading to a more efficient, approximate bias compensation technique that yields
results visually nearly indistinguishable from the ground truth.
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Figure 4.2: For one line (a) from renderings in Figure 4.1 we plot pixel intensity of the unbounded, bounded,
and reference solution (b). In (c), we show the amount of energy recovered by one and two compensation
steps (the top and the bottom boundary of the band correspond to the reference and the bounded solution,
respectively). The blue curve shows energy recovered assuming that the medium is locally homogeneous
(see Section 4.2.2).

4.21 Limiting Recursion Depth

When computing the residual transpot, Raab et al. [2008] create “compensation” vertices by ray
casting. At each compensation vertex, they estimate the illumination using the bounded estimator,
which gathers light from the original light sources and VPLs. As such, the bias compensation is
a recursive process: bounding occurs not only at the shading point, but also at the compensation
vertex. However, as the gathered radiance gets convolved with the scattering function and
attenuated by transmittance, the amount of light drops exponentially with every bounce of the
residual transport. Figure 4.2 shows that one compensation step (i.e. one bounce of residual
transport), and then bounding the VPLs’ contribution to the compensation vertices, recovers
most of the energy and already mimics the behavior of the ground truth curve quite well. It can
also be seen that two steps (and then bounding) is visually almost indistinguishable from the
ground truth solution.

4.2.2 Assuming Locally Homogeneous Media

In order to create a new “compensation” vertex y for a shading point x, Raab et al. [2008]
choose a random direction w along which they sample free path length using Woodcock track-
ing [Woodcock et al. 1965] (see Section 2.6.8). If y happens to be outside the bounding region, G,
will be zero and the compensation vertex will have no contribution. This approach is unbiased,
but suffers from high variance. The variance can be reduced by creating more compensation
paths; however, as there is no possibility in heterogeneous media to limit the importance sampling
of transmittance (i.e. the Woodcock tracking) to a maximum distance, a lot of free path sam-
ples will be rejected before generating one within the bounding region. We avoid this issue by
introducing the assumption that the medium is locally homogeneous around x.

One key ingredient of our ABC is that we generate compensation vertices always inside the
bounding region around x. The radius d of the spherical bounding region can be computed from
the bound b as d = 1/+/b. Assuming the medium inside the bounding region is homogeneous
with extinction coefficient x;, the probability density function for sampling a distance ¢ within
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(@) Accurate transmittance (b) Locally homogeneous (c) 16x difference

Figure 4.3: Bias compensation with accurately evaluated transmittance (a) and assuming the medium to
be locally homogeneous (b). (c) shows a 16 scaled difference (a) - (b); green and red signify positive and
negative values, respectively.
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where ¢ € (0,1) is a uniform random number. For the value of &;, we use the average extinction
coefficient within the bounding region, which can be efficiently obtained from a downsampled
version of the medium, if stored e.g. as a 3D texture. Note that if there is a surface intersection
along w occurring closer to x than ¢, this intersection becomes the new compensation vertex.

The assumption of local homogeneity does not compromise the results. In fact, it only affects
the placement of compensation vertices, and the computation remains unbiased, as long as we
correctly evaluate the transmittance T(x <> y). Nevertheless, we take the assumption one step
further, and assume the medium to be homogeneous not only for sampling the compensation
vertex, but also for evaluating the transmittance:

T(xey) = T(xey) = e Tyl (4.3)

Avoiding an exact evaluation of the transmittance (e.g. using costly ray marching or Woodcock
tracking) proves useful especially for GPU implementations as all other transmittances can be
precomputed before rendering (e.g. using deep shadow maps for the camera and the VPLs). As
such, no transmittance evaluations are required during rendering, which often enables higher
frame rates.

Although the assumption of local homogeneity can theoretically fail at locations with strongly
varying extinction, it yielded results visually indistinguishable from the ground truth (see Fig-
ure 4.3) in all our test scenes. Note that these locations could be easily detected if necessary
using the gradient of x;(x).
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4.2.3 Integration Strategies

In this section, we analyze different sampling strategies for estimating the residual light trans-
port. Our goal is to find a strategy that strikes a good balance between the number of eye ray
samples and compensation vertices. In Figure 4.4, we compare the results at roughly equal
rendering times; Figure 4.5 then shows RMSE plots for four strategies that we describe next.

1-to-N Strategy. Raab et al. [2008] propose to create one com-
pensation vertex using free path sampling and illuminate it
using all N VPLs. This has two implications. First, because of
the free path sampling, the vertex may be placed outside the
bounding region and the efforts of creating the vertex thus
wasted. Furthermore, this leads to high variance since the
compensation integral from Equation (3.11) is severely under-sampled (see Figure 4.4). Sec-
ond, each compensation step requires access to all VPLs and their shadow maps, making the
approach heavy on memory and difficult to integrate into progressive renderers.

N-to-1 Strategy. We found that the variance can be signifi-
cantly reduced by creating more compensation vertices, but
connecting each of them to less VPLs. More precisely, we iter-
ate over all VPLs and for each we create a new compensation
vertex. Each of the N compensation vertices thus requires ac-
cess to one VPL only. This strategy increases the number of rays
to be traced, but despite the slightly longer run-times, it still exhibits lower variance than [Raab
et al. 2008] as shown in the equal-time comparison in Figure 4.4.

1-to-1 Strategy. A slightly different approach is to generate a
different location along the eye ray for each VPL, for instance
w.r.t the expected contribution of each VPL, which further re-
duces variance. Creating only a single compensation vertex
that is connected to the VPL seems to be sufficient and re-
duces the cost of the compensation. This approach is also GPU
friendly, since VPLs can be processed independently: we can generate one VPL, create a shadow
map for it, and compute its contribution to all pixels (including the residual transport). The VPL
is then discarded and the image computed progressively. At any moment during the rendering,
we thus need to store only a single (deep) shadow map in the memory.

1-to-1 Strategy Assuming Locally Homogeneous Medium.
Because of the free path sampling, all the previous strategies
generate many compensation vertices outside the bounding re-
gion and thus with zero contribution. To avoid this, we would
like to create all vertices inside the bounding region. This can
be achieved by assuming the medium to be locally homoge-
neous. Furthermore, it ensures that parallel execution paths do not diverge, which is favorable
for GPU implementation.




68 4 Approximate Bias Compensation

(a) 1-to-N (b) N-to-1 (0) 1-to-1 (d) 1-to-1 loc. homog.

Figure 4.4: Comparison of four different sampling strategies for estimating the residual transport from
Figure 4.3 (CPU implementations): (1-to-N) [Raab et al. 2008] creates one compensation vertex for each
shading point and connects it to all VPLs. (N-to-1) achieves lower variance by generating more vertices
while connecting each of them to one VPL only. Similar, but more GPU-friendly approach is to generate
only one vertex connected to a single VPL (1-to-1). By assuming a locally homogeneous medium, we avoid
the expensive evaluation of transmittance and ensure that vertices are always created within the bounding
region. To achieve roughly equal rendering times, we adjust the number of samples along the eye ray: 3, 1,
115, and 78 for 1-to-N, N-to-1, 1-to-1, and 1-to-1 locally homogeneous, respectively.
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Figure 4.5: RMSE plot for different sampling strategies used in Figure 4.4. The 1-to-1 strategy clearly
outperforms other strategies.

4.2.4 Omitting Local Visibility

Computing visibility between point x and the compensation vertex y is often the performance
bottleneck. Clearly, the transport can only be occluded when x is close to a surface. Figure 4.6.a
depicts a situation when omitting the visibility test can cause artifacts. To asses how often these
artifacts appear, and their influence on the resulting image, we set up a series of experiments.
Interestingly, it was not easy to produce visible artifacts at all. This can be explained by consid-
ering the circumstances that have to coincide to cause them: (1) x must be close to a thin opaque
object, and (2) the medium must not be too dense otherwise sampling a distance through the
opaque object is unlikely. Figure 4.6.b shows one of our test scenes; artifacts become visible only
after scaling the brightness by at least two orders of magnitude. Note that a somewhat similar
assumption (ignoring visibility on short distances) has also been used for global illumination on
surfaces [Arikan et al. 2005, Davidovi¢ et al. 2010].
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(a) Mlustration (b) Rendering (c) Scaled insets

Figure 4.6: A test scene for evaluating the absence of the visibility test. (a) illustrates the transport of inter-
est: bleeding of the residual transport through the wall, (b) shows the rendering. In (c) we provide scaled
insets computed with accurate visibility test (top) and without testing the visibility (bottom). Artifacts can
be revealed only by tremendous scaling (x512).
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Figure 4.7: The data flow in our progressive GPU renderer. In the first iteration we compute the geometry
buffer, single scattering with bias compensation from primary light sources, transmittance, and direct
illumination. In each subsequent iteration we compute multiple scattering, indirect illumination, and bias
compensation due to a single VPL, and add it to the final result.

4.3 Implementation Details

We integrated our approximate bias compensation technique into a custom offline renderer to
evaluate our assumptions (Figures 4.2, 4.3, 4.4, and 4.6) For further acceleration we implemented
a progressive GPU renderer using Direct3D 11 (Figures 4.7, 4.8, 4.10, 4.11, and 4.12). Random
walks for creating VPLs are always carried out on the CPU using ray tracing. For acceleration,
we use a kD-tree built with the surface area heuristic.

In this section, we restrict ourselves to the peculiarities of the GPU implementation, which is
outlined in Figure 4.7. We split the computation into evaluating contributions from primary light
sources and from VPLs. First, we render a geometry buffer filled with all relevant information
such as BRDFs, positions, and normals. Afterwards, we evaluate single scattering and direct
illumination with visibility computed using shadow maps (with resolutions of 5122 up to 40962).
Transmittance towards light sources is evaluated analytically in case of homogeneous media and
numerically in heterogeneous media using ray marching (the offline renderer uses slower but
unbiased Woodcock tracking).
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VPL Lighting. After the contribution from primary light sources has been computed, our ren-
derer iterates over all VPLs and accumulates their contribution, one per iteration. For each VPL,
we first construct a variant of the adaptive volumetric shadow map [Salvi et al. 2010], and then
compute its contribution to all surface and volumetric points seen by the camera. The latter is
evaluated using an adaptive ray marching along the camera the rays.

Bias compensation. We split the compensation integral into two terms: one for compensating
from the primary light sources, and the second gathering compensation energy from VPLs. This
allows us to evaluate compensation from the primary lights directly in the single scattering
shader, which is executed only once in the first iteration. For that we generate a buffer that
contains a set of random directions and additional random numbers used to sample the distance
along the compensation ray. Computing bias compensation due to VPLs is integrated into a
shader that evaluates multiple scattering. Our assumption of locally homogeneous medium and
neglecting visibility allow us to create the compensation vertices always within the bounding
region. This, in contrast to the original bias compensation [Raab et al. 2008], avoids branching
and divergent execution paths, substantially accelerating the GPU implementation.

4.4 Results

We evaluated our method using several test scenes with homogeneous and heterogeneous par-
ticipating media. All timings were recorded using an Intel Core i7 6-core system with 3.2GHz
and a GeForce GTX 580 GPU.

Our algorithm can be used for rendering moderately complex scenes with image-based lighting,
such as those in Figure 4.8. Both the CrRYTEK SrONzA scene (262k triangles, 118k VPLs) and the
C1TY scene (823k triangles, 108k VPLs) were rendered with a 2-step ABC (i.e. two bounces of
residual transport). The shading cost depends on the geometric complexity of the scene and
the resolution of the 3D texture storing the heterogeneous participating medium. A detailed
analysis of the per-VPL GPU shading cost is shown in Figure 4.9.

Figure 4.10 shows a visual comparison of our approximate bias compensation technique to a
reference image computed with unbiased bias compensation Raab et al. [2008] in the partici-
pating medium. In both cases, we use 6800 VPLs in the entire scene. The approximate bias
compensation recovers most of the lost energy already after the first compensation step.

In Figure 4.11, we compare our algorithm to photon mapping with beam radiance estimate (BRE)
by Jarosz et al. [2008b]. In contrast to the BRE, instant radiosity with our compensation technique
can be trivially parallelized, thus we used the GPU implementation in the comparison. All
images are rendered at 10242 pixel resolution. Shooting photons and building the search data
structure for BRE took 25 seconds, rendering using beam queries additional 110 seconds (135
seconds in total). The instant radiosity with our 2-step ABC took 125 seconds. Photon mapping
still shows the typical artifacts that arise from an insufficient number of photons in the volume,
while ABC is nearly indistinguishable from the reference solution, which was computed using
the method of Raab et al. [2008] in 31 hours.

As shown in Figure 4.12, our algorithm also supports media with anisotropic phase functions.
We rendered the scene with 4320 VPLs and a 2-step ABC varying the g parameter of the Henyey-
Greenstein phase function. The average shading time per VPL is 16 ms.
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(a) CRYTEK SPONZA (b) CrTy

Figure 4.8: Our approximate bias compensation can be used in complex environments to recover the energy
loss due to clamping the contribution of VPLs. In the CRYTEK SPONZA the clamped volumetric and surface
illumination was rendered in 39 minutes (using 118k VPLs), while the missing energy was recovered using
a two-bounce ABC in only 13 minutes.
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Figure 4.9: Shading time per VPL for the CryTEk SpoNzA and CITy scenes: most of the shading time is
used for constructing the shadow maps (about 60%), while indirect (surface) illumination is relatively fast,
and multiple scattering with 2-step ABC requires only 35 — 38% of the entire shading cost.
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Figure 4.10: A room with a heterogeneous smoke (x; = 0.9, x, = 0.001) rendered with 6800 VPLs. Bounding
(b) removes a remarkable amount of energy, which is almost completely recovered using just one ABC step
(c). The insets visualize lost energy (green), and overcompensation (red). Differences on the edges are due
to different sampling of primary visibility on the CPU and GPU.
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(a) BRE [Jarosz et al. 2008b] (b) Our ABC (c) Reference

Figure 4.11: An approximate equal-time comparison of beam radiance estimate [Jarosz et al. 2008a] (a) with
1 million volumetric photons and our GPU-accelerated 2-step ABC (b) with 7887 VPLs.
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Figure 4.12: The BuppHA in a homogeneous medium (x; = 0.075, x, = 0.001) with varying ¢ parameter of
the Henyey-Greenstein phase function. The scene is lit by a single point light.

4.5 Discussion and Possible Improvements

In this section, we describe our findings from experimenting with our technique, which we
believe are important to assess its strengths and limitations, and use in complex scenes.

Scattering Functions. Similarly to many-light techniques tailored for lighting surfaces, our
approach sub-samples the path space. The resulting images are typically close to ground truth
when scattering functions are isotropic or moderately anisotropic. Our method supports even
highly anisotropic phase functions; however, strong forward or backward scattering leads to
similar problems that arise when VPL techniques face highly glossy ma