Virtual Ray Lights for Rendering Scenes with Participating Media

Jan Novák **Carsten Dachsbacher**

Derek Nowrouzezahrai Wojciech Jarosz

Karlsruhe Institute of Technology

Université m de Montréal

Multiple scattering - approaches

Multiple scattering - approaches

[Stam 1995]

[Jensen et al. 2001]

[Jensen and Buhler 2003]

Diffusion theory

[D'Eon and Irving 2011] [Donner and Jensen 2005]

fast, but no occlusion homogeneous only

[Lafortune and Willems 1996]

[Jensen and Christensen 1998]

[Walter et al. 2006]

Monte Carlo [Jarosz et al. 2008]

[Raab et al. 2008]

[Jarosz et al. 2011]

Multiple scattering - approaches

[Lafortune and Willems 1996]

[Walter et al. 2006]

[Raab et al. 2008]

Bidirectional Path Tracing

[Lafortune and Willems 1996]

Volumetric Photon Mapping [Jensen and Christensen 1998]

[Jarosz et al. 2008]

Bidirectional Path Tracing [Lafortune and

Willems 1996]

Volumetric Photon Mapping

requires a lot of photons

[Jensen and Christensen 1998] [Jarosz et al. 2008]

Bidirectional Path Tracing

Volumetric Photon Mapping

[Jensen and Christensen 1998] [Jarosz et al. 2008]

requires a lot of photons

Bidirectional Path Tracing

SIGGRAPH2012

Photon Beams [Jarosz et al. 2011a] [Jarosz et al. 2011b]

Volumetric Photon Mapping

[Jensen and Christensen 1998] [Jarosz et al. 2008]

requires a lot of photons

Bidirectional Path Tracing

SIGGRAPH2012

Photon Beams [Jarosz et al. 2011a] [Jarosz et al. 2011b] UNICONSTRUCTION Great caustics, MS not so...

Volumetric Photon Mapping

[Jensen and Christensen 1998] [Jarosz et al. 2008]

requires a lot of photons

Bidirectional Path Tracing [Lafortune and

Willems 1996]

SIGGRAPH2012

Photon Beams [Jarosz et al. 2011a]

[Jarosz et al. 2011b] great caustics, MS not so...

[Keller 1997] [Walter et al. 2005] [Raab et al. 2008]

Volumetric Photon Mapping

[Jensen and Christensen 1998] [Jarosz et al. 2008]

requires a lot of photons

Bidirectional Path Tracing [Lafortune and

Willems 1996]

suffers from singularities

SIGGRAPH2012

Photon Beams

[Jarosz et al. 2011a]

[Jarosz et al. 2011b]

great caustics, MS not so...

[Keller 1997] [Walter et al. 2005] [Raab et al. 2008]

Volumetric Photon Mapping

[Jensen and Christensen 1998] [Jarosz et al. 2008]

requires a lot of photons

Bidirectional Path Tracing [Lafortune and

Willems 1996]

suffers from singularities

SIGGRAPH2012

Photon Beams

[Jarosz et al. 2011a] [Jarosz et al. 2011b]

great caustics, MS not so...

[Keller 1997] [Walter et al. 2005] [Raab et al. 2008]

Virtual Ray Lights

Quick demo

6 VRLs

9

media-to-media

9

9

S

 $-\mathrm{d}v\mathrm{d}u$

SIGGRAPH2012

Φ \mathcal{U} JS

Φ JS

SIGGRAPH2012

inverse squared distance

$L = \Phi \int_0^s \int_0^t \frac{f_s(\theta_u) f_s(\theta_v) \sigma_s(u) \sigma_s(v) T(u) T(v) T(w) V}{w(u, v)^2} dv du$

approximate using Monte Carlo with importance sampling

SIGGRAPH2012

How to (importance) sample?

phase functions × scattering transmittance X

How to (importance) sample? Simple cases first!

phase functions transmittance × scattering X

How to (importance) sample? Simple cases first!

transmittance phase functions × scattering X

How to (importance) sample? Simple cases first!

transmittance phase functions × scattering X

Isotropic media

SIGGRAPH2012

Isotropic media

SIGGRAPH2012

inverse squared distance

inverse squared distance

inverse squared distance

inverse squared distance

marginal PDF for sampling VRL

inverse squared distance

marginal PDF for sampling VRL

inverse squared distance

$$pdf(v) = \frac{\int_0^s w^{-2} du}{\int_0^t \int_0^s w^{-2} du dv}$$

$$pdf(v) = \frac{\int_0^s w^{-2} du}{\int_0^t \int_0^s w^{-2} du dv}$$

$$w = \sqrt{h^2 + \hat{u}^2 + \hat{v}^2 - 2\hat{u}\hat{v}} \, \mathbf{c}$$

$$pdf(v) = \frac{\int_0^s w^{-2} du}{\int_0^t \int_0^s w^{-2} du dv} \approx \frac{\int_{-\infty}^\infty w^{-2} du}{\int_0^t \int_{-\infty}^\infty w^{-2} du dv}$$

$$pdf(v) = \frac{\int_0^s w^{-2} du}{\int_0^t \int_0^s w^{-2} du dv} \approx \frac{\int_{-\infty}^\infty w^{-2} du}{\int_0^t \int_{-\infty}^\infty w^{-2} du dv}$$

U

assume infinite camera ray

$$pdf(v) = \frac{\int_0^s w^{-2} du}{\int_0^t \int_0^s w^{-2} du dv} \approx \frac{\int_{-\infty}^\infty w^{-2} du}{\int_0^t \int_{-\infty}^\infty w^{-2} du dv} = \frac{\sin \theta}{(A(\hat{v}_1) - A(\hat{v}_0))\sqrt{h^2 + v^2 \sin^2\theta}}$$

assume infinite camera ray

$$pdf(v) = \frac{\int_0^s w^{-2} du}{\int_0^t \int_0^s w^{-2} du dv} \approx \frac{\int_{-\infty}^\infty w^{-2} du}{\int_0^t \int_{-\infty}^\infty w^{-2} du dv} = \frac{\sin \theta}{(A(\hat{v}_1) - A(\hat{v}_0))\sqrt{h^2 + v^2 \sin \theta}}$$
assume infinite
camera ray

$$pdf(v) = \frac{\int_0^s w^{-2} du}{\int_0^t \int_0^s w^{-2} du dv} \approx \frac{\int_{-\infty}^\infty w^{-2} du}{\int_0^t \int_{-\infty}^\infty w^{-2} du dv} = \frac{\sin \theta}{(A(\hat{v}_1) - A(\hat{v}_0))\sqrt{h^2 + v^2 \sin \theta}}$$

$$assume infinite camera ray$$

$$A(x) = \sinh^{-1}\left(\frac{x}{h}\sin\theta\right)$$

$$cdf^{-1}(\xi) = \frac{h\sinh(\operatorname{lerp}(A(\hat{v}_0), A(\hat{v}_1), \xi)))}{\sin \theta}$$

$$pdf(v) = \frac{\int_0^s w^{-2} du}{\int_0^t \int_0^s w^{-2} du dv} \approx \frac{\int_{-\infty}^\infty w^{-2} du}{\int_0^t \int_{-\infty}^\infty w^{-2} du dv} = \frac{\sin \theta}{(A(\hat{v}_1) - A(\hat{v}_0))\sqrt{h^2 + v^2 \sin \theta}}$$

$$assume infinite \\ camera ray$$

$$A(x) = \sinh^{-1}\left(\frac{x}{h}\sin\theta\right)$$

$$cdf^{-1}(\xi) = \frac{h\sinh(\operatorname{lerp}(A(\hat{v}_0), A(\hat{v}_1), \xi)))}{\sin \theta}$$

$$pdf(v) = \frac{\int_0^s w^{-2} du}{\int_0^t \int_0^s w^{-2} du dv} \approx \frac{\int_{-\infty}^\infty w^{-2} du}{\int_0^t \int_{-\infty}^\infty w^{-2} du dv} = \frac{\sin \theta}{(A(\hat{v}_1) - A(\hat{v}_0))\sqrt{h^2 + v^2 \sin \theta}}$$

$$assume infinite \\ camera ray$$

$$A(x) = \sinh^{-1}\left(\frac{x}{h}\sin\theta\right)$$

$$cdf^{-1}(\xi) = \frac{h\sinh(\operatorname{lerp}(A(\hat{v}_0), A(\hat{v}_1), \xi)))}{\sin \theta}$$

$$pdf(v) = \frac{\int_0^s w^{-2} du}{\int_0^t \int_0^s w^{-2} du dv} \approx \frac{\int_{-\infty}^\infty w^{-2} du}{\int_0^t \int_{-\infty}^\infty w^{-2} du dv} = \frac{\sin \theta}{(A(\hat{v}_1) - A(\hat{v}_0))\sqrt{h^2 + v^2 \sin \theta}}$$

$$assume infinite \\ camera ray$$

$$A(x) = \sinh^{-1}\left(\frac{x}{h}\sin\theta\right)$$

$$cdf^{-1}(\xi) = \frac{h\sinh(\operatorname{lerp}(A(\hat{v}_0), A(\hat{v}_1), \xi)))}{\sin \theta}$$

sample the camera ray w.r.t the inverse squared distance to the VRL point

- equi-angular sampling [Kulla and Fajardo 2011, 2012]

sample the camera ray w.r.t the inverse squared distance to the VRL point

- equi-angular sampling [Kulla and Fajardo 2011, 2012]

sample the camera ray w.r.t the inverse squared distance to the VRL point

Summary of isotropic media:

Summary of isotropic media:

- Marginal of the Conditional PDFs
- inverse squared distance
- fully analytic = fast and efficient

Summary of isotropic media:

- Marginal of the Conditional PDFs
- inverse squared distance
- fully analytic = fast and efficient

isotropic

inverse squared distance

anisotropic

inverse squared distance

anisotropic

PF product / squared distance

anisotropic

PF product / squared distance

$$pdf(v) = \frac{\int_0^s f_s(u) f_s(v) w^{-2} du}{\int_0^t \int_0^s f_s(u) f_s(v) w^{-2} du}$$

 $\mathrm{d}v$

Marginal PDF

$$pdf(v) = \frac{\int_0^s f_s(u) f_s(v) w^{-2} du}{\int_0^t \int_0^s f_s(u) f_s(v) w^{-2} du}$$

 $\mathrm{d}v$

$$pdf(v) = \frac{\int_0^s f_s(u) f_s(v) w^{-2} du}{\int_0^t \int_0^s f_s(u) f_s(v) w^{-2} du dv} \approx \frac{\int_{-\infty}^\infty w^{-2} du}{\int_0^t \int_{-\infty}^\infty w^{-2} du dv}$$

$$pdf(v) = \frac{\int_0^s f_s(u) f_s(v) w^{-2} du}{\int_0^t \int_0^s f_s(u) f_s(v) w^{-2} du dv} \approx \frac{\int_{-\infty}^\infty w^{-2} du}{\int_0^t \int_{-\infty}^\infty w^{-2} du dv}$$

identical to isotropic medium

replace equi-angular sampling by importance sampling the PF product

replace equi-angular sampling by importance sampling the PF product

isotropic ~ equi-angular

replace equi-angular sampling by importance sampling the PF product

isotropic ~ equi-angular

replace equi-angular sampling by importance sampling the PF product

isotropic ~ equi-angular

Conditional PDF

replace equi-angular sampling by importance sampling the PF product

anisotropic

Conditional PDF

replace equi-angular sampling by importance sampling the PF product

anisotropic

Conditional PDF

replace equi-angular sampling by importance sampling the PF product

anisotropic

Conditional PDF _____

Conditional PDF

replace equi-angular sampling by importance sampling the PF product

anisotropic

Conditional PDF

replace equi-angular sampling by importance sampling the PF product

anisotropic

Conditional PDF

replace equi-angular sampling by importance sampling the PF product

anisotropic

Conditional PDF

replace equi-angular sampling by importance sampling the PF product

anisotropic

Conditional PDF

replace equi-angular sampling by importance sampling the PF product

anisotropic

replace equi-angular sampling by importance sampling the PF product

piece-wise linear PDF

angular domain about p

replace equi-angular sampling by importance sampling the PF product

- piece-wise linear PDF
- piece-wise quadratic CDF

angular domain about p

replace equi-angular sampling by importance sampling the PF product

- piece-wise linear PDF
- piece-wise quadratic CDF
- 10 adaptively distributed vertices balance between speed and quality

angular domain about p

examples for Henyey-Greenstein PF with g = 0.95

examples for Henyey-Greenstein PF with g = 0.95

Importance sampling

inverse phase functions \mathbf{x} squared distance

anisotropy distance²

heterogeneity

Importance sampling

inverse phase functions \mathbf{x} squared distance

anisotropy distance²

heterogeneity

Combine using MIS

$pdf(u, v) = \sigma_s(u) T(u) \sigma_s(v) T(v) T(u, v)$

$pdf(u, v) = \sigma_s(u) T(u) \sigma_s(v) T(v) T(u, v)$

 $pdf(u,v) = \sigma_s(u) T(u) \sigma_s(v) T(v) T(v) T(u,v)$

along camera along VRL ray

Separable!

$$pdf(u, v) = \sigma_s(u) T(u) \sigma_s(v) T(v)$$

along camera ray along VRL

Separable!

 $pdf(v) = \sigma_s(v) T(v)$ $pdf(u) = \sigma_s(u) T(u)$

$$pdf(u, v) = \sigma_s(u) T(u) \sigma_s(v) T(v)$$

along camera ray along VRL

Separable!

 $pdf(v) = \sigma_s(v) T(v)$ $pdf(u) = \sigma_s(u) T(u)$

Analysis and Results

Analysis and Results

Analysis of singularities VRLs vs. VPLs

2. Example renders VRLs vs. VPLs vs. Progressive Photon Beams

Media-to-Media

Virtual Point Lights

Virtual Ray Lights (our method)

Media-to-Media

equal time comparison

Virtual Point Lights

point-to-point

Virtual Ray Lights (our method)

Media-to-Media

equal time comparison

Virtual Point Lights

point-to-point

line-to-point

Virtual Ray Lights (our method)

Media-to-Media

point-to-line

equal time comparison

Media-to-Surface

Virtual Point Lights

point-to-point

Virtual Ray Lights (our method)

line-to-point

Media-to-Media

point-to-line

equal time comparison

Media-to-Surface

Virtual Point Lights

point-to-point

Virtual Ray Lights (our method)

Media-to-Media

point-to-line

equal time comparison

Surface illumination **Photon Mapping**

Single scattering **Photon Beams**

Multiple scattering

Multiple scattering

Multiple ScatteringProgressive Photon BeamsVirtual Point Lights

Virtual Ray Lights

Multiple Scattering **Progressive Photon Beams Virtual Point Lights**

Virtual Ray Lights

4K VRLs

1K beams 6 seconds

4K VPLs

Multiple Scattering **Progressive Photon Beams**

Virtual Ray Lights

1200 s

60 s

1200 s

Smoky Room heterogeneous 1280x720

Media-to-MediaghtsProgressive Photon BeamsVirtual Point Lights

Virtual Ray Lights

Media-to-Media **Virtual Ray Lights Progressive Photon Beams Virtual Point Lights**

6K VRLs

142K beams

8K VPLs

5 seconds

Media-to-Media Progressive Photon Beams 102 seconds

Virtual Ray Lights

101 seconds

Virtual Point Lights

102 seconds

Media-to-Surface

Virtual Ray Lights

600 seconds

Virtual Point Lights

600 seconds

Temporal coherence VPLs vs. VRLs

1 minute/frame

1 minute/frame

1 minute/frame

3 minutes/frame

Conclusion

SIGGRAPH2012

Conclusion

Virtual Ray Lights

- turn segments of a light path into light sources
- importance sampling
- easily integrates into existing PM frameworks, GPU friendly!

Volumetric Photon Mapping

Bidirectional Path Tracing

ams

SIGGRAPH2012

ams

Virtual Ray Lights

Bidirectional Volumetric Path Tracing

ams

Virtual Ray Lights

SIGGRAPH2012

Bidirectional Volumetric Path Tracing RayLightCuts

ams

Virtual Ray Lights

SIGGRAPH2012

Bidirectional Volumetric Path Tracing

Virtual Beam Lights

[Novák et al 2012]

Let's have a break...

Thank you!