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1 NON-EXPONENTIAL TRANSPORT IN ARBITRARY
PARTICLE DISTRIBUTIONS

The derivation in Section 2 relies on the classical radiative transport
theory to define the realizations of the random process over which
the macroscopic problem is averaged. This may appear to limit
the generality, but in this section we start from a weaker set of
assumptions to show the same fundamental relationships between
transmittance and free-flight PDF for light originating from the
medium and from outside the medium still hold.

We consider a realization of the medium to be a binary volume in
which transport is described simply by a visibility function Vµ (x, y)
which is equal to 1 when the line segment from x and y is un-
occluded and 0 when it is occluded. This allows for any arrange-
ments of particles of any shape and orientation [Jakob et al. 2010],
with no limits on correlation between particles. Visibility is recip-
rocal: Vµ (x, y) = Vµ (y, x); and it is monotonic: for a point z on the
line between x and y, Vµ (x, y) = Vµ (x, z) ∧ Vµ (z, y); in particular,
Vµ (x, y) =⇒ Vµ (x, z) for all z between x and y.

The expected value ofVµ over the ensemble of random volumes is
the unconditional probability of visibility from one point to another,
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called the simple transmittance or just transmittance, and denoted
ff:

ff(x, y) = Pr{Vµ (x, y) = 1} = E{Vµ (x, y)}.
ff inherits reciprocity and monotonicity from Vµ : ff(x, y) = ff(y, x)
and ff(x, z) ≥ ff(x, y) for all z between x and y. In order to exclude
some awkward cases we assumeff(x, x) = 1 and thatff is continuous.
(This excludes infinitely thin opaque surfaces, which we consider
separately in section 2, and also media that have a non-negligible
packing rate.) Transmittance is appropriate for computing how
much light makes it from a surface source to a surface detector
through the medium: the surfaces are the same in all realizations.

To make later definitions simple we define a restriction of ff to a
ray:

ffx,ω (s) = ff(x, x + sω) (54)

The cross-section, or attenuation coefficient, is the probability
per unit length of hitting the medium. In terms of ffx,ω , it is

σ (x,ω) = lim
s→0

Pr{¬Vµ (x, x + sω)}
s

(55)

= lim
s→0

1 − ffx,ω (s)

s
(56)

= −ff ′
x,ω (0) (57)

To simplify notation we write ff ′(x,ω) for ff ′
x,ω (0).

The free-flight distribution fp(x, y) is a probability density along
rays that describes the distribution of the first intersection with
the volume for light starting at x and heading towards y. First
intersecting at y involves two events happening together: y is visible
from x, and a point infinitesimally beyond y is not visible from x.
This lets us compute the probability, as a density along the line
joining x and y:

fp(x, y) = lim
s→0

Pr{Vµ (x, y) ∧ ¬Vµ (x, y + s−→xy)}
s

(58)

= lim
s→0

E{Vµ (x, y)(1 −Vµ (x, y + s−→xy))}
s

(59)

= lim
s→0

E{Vµ (x, y) −Vµ (x, y + s−→xy)}
s

(60)

= lim
s→0

ff(x, y) − ff(x, y + s−→xy)
s

(61)

= −ff ′

x,−→xy
(|y − x|) (62)
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This says that the probability per unit length of stopping at y is
equal to the rate of decrease of transmittance along the ray from x
towards y. This derivative of ffx,−→xy(s) with respect to s can also be
seen as a directional partial derivative of ff(x, y) with respect to y.
We define the notation

ff ′(x, y) = ff ′

x,−→xy
(|x − y|)

to simplify writing these derivatives along the line joining two
segments. Note that even though ff(x, y) = ff(y, x), in general
ff ′(x, y) , ff ′(y, x).
Light that is emitted by or scattered by the volume itself experi-

ences a different transmittance and a different free flight distribution.
The volume-source transmittance pf(x, y) is the fraction of light emit-
ted by the volume at x towards y that reaches y. In a randommedium
the volume-source transmittance from x to y is the probability that
y is visible from x conditioned on the presence of a particle at x. Simi-
larly, the volume-source free flight distribution pp(x, y) is the length
distribution of first intersections with the volume, also conditioned
on an intersection at x.

Because of the assumption of low packing rate, we can’t condition
literally on a particle at x; rather we look for an intersection in an
infinitesimal interval beyond x, just as when defining σ .

We can calculate pf using the probability of visibility from x to y
conditioned on having an intersection in a short interval before x,
in the limit as the collision interval shrinks. Using the familiar rule
for conditional probability Pr{P |Q} = Pr{P ∧Q}/Pr{Q},

pf(x, y) = lim
s→0

Pr{Vµ (x, y) | ¬Vµ (x + s−→yx, x)} (63)

pf(x, y) = lim
s→0

Pr{Vµ (x, y) ∧ ¬Vµ (x + s−→yx, x)}

Pr{¬Vµ (x + s−→yx, x)}
(64)

pf(x, y) = lim
s→0

Pr{Vµ (x, y) ∧ ¬Vµ (x + s−→yx, y)}

Pr{¬Vµ (x + s−→yx, x)}
(65)

pf(x, y) = lim
s→0

(ff(x, y) − ff(x + s−→yx, y))/s
Pr{¬Vµ (x + s−→yx, x)}/s

(66)

pf(x, y) =
lims→0(ff(y, x) − ff(y, x + s−→yx))/s

σ (x,−→yx)
(67)

=
−ff ′(y, x)
σ (x,−→yx)

(68)

Since σ (x,−→yx) is the limiting value of −ff ′(y, x) as y approaches x,
this normalization makes pf into a proper transmittance that starts
at 1 and decreases to 0 with distance.

Since they are both derivatives of ff , it is clear that fp and pf are
related by the reciprocity relation:

pf(x, y)σ (x,−→yx) = −ff ′(y, x) = fp(y, x)

Finally, we can calculate pp(x, y) from pf in the same way we
derived fp from ff: the derivative along the ray of transmittance

gives the corresponding free-flight PDF:

pp(x, y) = lim
s→0

pf(x, y) − pf(x, y + s−→xy)
s

(69)

= −

pf ′
x,−→xy

(|y − x|)

σ (x,−→yx)
(70)

=
ff ′′(x, y)
σ (x,−→yx)

(71)

Since pf is already the derivative of ff along the ray with respect to
x, pp is a mixed second derivative of ff with respect to both x and y,
denoted ff ′′(x, y) on the last line above.
The conclusion of this section is that the relationships between

ff , fp, pf , and pp, which were established in §3 using an ensemble
average over random heterogeneous classical media, also hold in
the more general case of arbitrary assemblies of correlated particles.

2 PROOF OF TRANSMITTANCE/FREE-FLIGHT PDF
RELATIONSHIP

We can relate ff and fp as follows:

ff(x, xt ) =
〈
Trµ (x, xt )

〉
(72)

=

〈∫ ∞

t
pµ (x, xs ) ds

〉
from Equation (3) (73)

=

∫ ∞

t

〈
pµ (x, xs )

〉
ds from linearity of ⟨·⟩ (74)

=

∫ ∞

t
fp(x, xs ) ds from Equation (15b). (75)

The proof for pf and pp follows analogously.

3 SIMPLIFICATION OF pp(x, y)/σ (y)
We simplify as follows:

pp(x, y)
σ (y)

=

〈
ρµ (x)Trµ (x, y)σµ (y)

〉
σ (y)

=
〈
ρµ (x)Trµ (x, y)ρµ (y)

〉
(76)

We can interpret this as an ensemble averaged transmittance, con-
ditioned on both x and y coinciding with a scatterer.

4 NAIVE NON-EXPONENTIALITY IS NOT ENERGY
CONSERVING

We show a simple proof to demonstrate that simply replacing the
exponential transmittance (e−τ ) in the classical path integral with a
non-exponential function Tr(τ ) must violate energy conservation.
We consider a scene filled with a participating medium characterized
by its extinction coefficient
σ (x) and albedo α(x), with the
derived scattering coefficient
σs (x) = α(x)σ (x). We consider a pencil beam of light starting at x
traveling in directionω that intersects a surface at point xz .
The radiance emitted at the beam origin is L0(x,ω), and the

radiance received by points on the beam decreases with distance
as a result of extinction by the medium. The emitted radiance must
then be distributed between two terms: the amount of light that
scatters in the medium, and the remaining fraction that reaches the
surface. Assuming a unit albedo, the sum of both terms must equal
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L0(x,ω)—otherwise, energy is either lost or gained along the way.
This results in the following constraint:

L0(x,ω) = L0(x,ω)Tr(τ (x, xz )) +
∫ z

0
L0(x,ω)Tr(τ (x, xs ))σs (xs ) ds,

(77)

The above equation can be simplified by dividing out L0(x,ω):

1 = Tr(τ (x, xz )) +
∫ z

0
Tr(τ (x, xs ))σs (xs ) ds . (78)

Using the fact that dτ/ds = σ (xs ), and σ = σs when α = 1, we can
perform a change of variable from ds to dτ to obtain

1 = Tr(τ (x, xz )) +
∫ τ (x,xz )

0
Tr(τ ) dτ . (79)

Any transmittance function Tr that does not satisfy the above con-
straint violates energy conservation and must inevitably lead to
energy loss or gain when inserted into the classical path integral.

Equation (79) is an ordinary differential equation of the form 1 =
f ′(x) + f (x) − f (0). The only solutions that satisfy it are expressed
by Tr(τ ) = c · e−τ . In other words, only an exponential transmittance
satisfies energy conservation in the classical path integral. Violation
of energy conservation is not only a practical problem, but also
means that the underlying process is non-physical. This means that
the naive solution of substituting a non-exponential function for
the transmittance in the classical path integral cannot work, and a
more principled approach is needed.

5 VOLUMETRIC EMITTERS AND SENSORS
In the main paper, we have assumed that emission and measure-
ments only occur on surfaces and therefore do not depend on the
realization. This was done merely for conciseness, and we show in
this section how to derive the general case of volumetric emitters
and sensors. Our final path throughput is identical to the one of the
main paper, with minor changes to the path integral.
We define a volumetric emitter (sensor) such that the emitted

radiance (importance) is proportional to the local density of the
medium. This means that the emission term becomes the product
Le (x0, x1)Σµ (x0), and similarly for importance. This results in a new
path integral

Iµ =

∫
P

Le (x0, x1)Σ(x0)дµ (x)W (xk−1, xk ) dx (80)

дµ (x) =
Σµ (x0)
Σ(x0)

[k−1∏
i=1

fµ (xi )Σµ (xi )

] [k−1∏
i=0

Trµ (xi , xi+1)G(xi , xi+1)

]
Σµ (xk )

(81)

where we have performed the transformation Σµ (x0) = Σ(x0) ·
Σµ (x0)/Σ(x0) and moved one of the Σ into the path integral and all
other Σ terms directly into the path throughput.

Following the derivations of themain paper, we assume that phase
function and albedo are independent of the medium and rearrange

the dependent terms:〈
Iµ
〉
=

∫
P

Le (x0, x1)Σ(x0)
〈
дµ (x)

〉
W (xk−1, xk ) dx (82)

〈
дµ (x)

〉
≈

k−1∏
i=1

f (xi )
k−1∏
i=0

G(xi , xi+1)

〈
Σµ (x0)
Σ(x0)

k−1∏
i=0

Trµ (xi , xi+1)Σµ (xi+1)

〉
.

(83)

Finally, we assume decorrelated path segments and obtain the ap-
proximation〈

Σµ (x0)
Σ(x0)

k−1∏
i=0

Trµ (xi , xi+1)Σµ (xi+1)

〉
≈

k−1∏
i=0

〈
Tµ (xi , xi+1)

〉
. (84)

We claim in this equation that decorrelating path segments in this
more general derivation results in the same right-hand side as in the
main paper. There are two cases to consider: For the last segment
on the path (xk−1, xk ), we have already introduced a Σ(xk ) term in
the main paper. This was allowed because this term is 1 if xk is on a
surface, which we assumed in the main paper. In this more general
derivation, Σ(xk ) was present from the start; it selects between the
transmittance and the free-flight PDF on the camera segment. This
selection is already present in the transport kernel from the main
paper, and the term for the camera segment does not change.

For the first segment on the path (x0, x1), we are presented with
an additional Σµ (x0)/Σ(x0) term in the more general derivation.
However, notice that this term is 1 if x0 is on a surface, and ρµ (x0)
if x0 is in the medium. In other words, a volume emitter simply
uses a correlated ensemble average, compared to the uncorrelated
ensemble average of a surface emitter. However, the transport kernel
introduced in the main paper already does that.

In other words, the path throughput presented in the paper does
not need to change if we wish to support volumetric emitters or
sensors. The only change that is required is to add a Σ(x0) term to
the path integral as in Equation (80).
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