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No Silver Bullet

RHF 
Too blurry, needs manual tuning

Input RHF Reference



No Silver Bullet

RDFC 
Banding artifacts

Input RDFC Reference



No Silver Bullet

WLR 
Residual noise

Input WLR Reference



Methodology

Theoretical analysis – how are previous filters related 
Comparative analysis – how do previous filters perform 
New design – how can we combine the strengths of previous filters



Filtering Framework

256’000 spp



Filtering Framework

256 spp



Filtering Framework

p

256 spp



Filtering Framework

All filters perform a regression to minimize 

What model and weights?

p

256 spp



Filtering Framework

All filters perform a regression to minimize 

What model and weights?

p

256 spp



Filtering Framework

All filters perform a regression to minimize 

What model and weights?

p
q

256 spp



Filtering Framework

All filters perform a regression to minimize 

What model and weights?

p
q

256 spp



Filtering Framework

All filters perform a regression to minimize 

What model and weights?

p
q

256 spp



Filtering Framework

General:  

Input – 256 spp Reference



General:  

Filtering Framework — Box Filter

Box FilterInput – 256 spp Reference



General:  

Box: 

Filtering Framework — Box Filter

Input – 256 spp Box Filter Reference



General:  

Box: 

Uniform

Filtering Framework — Box Filter

Input – 256 spp

Weights:

Box Filter Reference



General:  

Box: 

zero

Filtering Framework — Box Filter
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General:  

NLM: 

Filtering Framework — NLM [Rousselle et al. 2012]

NL-MeansUniform

Input – 256 spp

zeroOrder:
Weights:

Box Filter NLM Filter Reference

zero

Based on the Non-Local Means filter of Buades et al. [2005]
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RDFC: 

ReferenceAlbedo Normal

x = {Color,Albedo,Normal, ...}

Filtering Framework — RDFC [Rousselle et al. 2013]
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first

x = {Color,Albedo,Normal, ...}

Filtering Framework — WLR [Moon et al. 2014]
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NL-MeansUniform Joint NL-Means Cross-bilateral

Filtering Framework — WLR [Moon et al. 2014]
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General:  

WLR:  

zero

Filtering Framework — Proposed Filter

NL-Means NL-MeansUniform Joint NL-Means Cross-bilateral

x = {Color,Albedo,Normal, ...}

Input – 256 spp

zeroOrder:
Weights:
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General:  

WLR:  

zero first

Filtering Framework — Proposed Filter

Joint NL-MeansNL-Means NL-MeansUniform Cross-bilateral

x = {Color,Albedo,Normal, ...}

NLM Filter Our FilterInput – 256 spp

zeroOrder:
Weights:

Box Filter RDFC Filter ReferenceWLR Filter

zero first
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Results
http://drz.disneyresearch.com/~jnovak/publications/NFOR/supplementary/index.html

http://drz.disneyresearch.com/~jnovak/publications/NFOR/supplementary/index.html
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Limitations

No adaptive sampling (yet) 
High overhead



Conclusion

Comparative analysis of recent denoising techniques 
Novel filter with state-of-the-art results 
Future work 

Comparative analysis of adaptive sampling techniques 
Sparse reconstruction to reduce overhead




