
Overview
… follows the structure of the STAR

Introduction & Welcome (Carsten)
Many-Light Rendering Concepts (Jan)

Basic Idea
Improved Virtual Lights Generation
Lighting with Virtual Lights

Really Many Lights: Scalability (Carsten)
Interactive and Real-Time Rendering (Carsten)
Conclusions, Outlook, Q&A (Jan & Carsten)

22the slides of this part are based on Bruce Walter‘s and Milos Hasan‘s presentations

Overview: Scalability
Scalable Solutions for (Really) Many Lights

VPL usage is more expensive than generation

Lightcuts
illumination at a single receiver: Lightcuts
“Lightcuts: a Scalable Approach to Illumination” by Walter,
Fernandez, Arbree, Bala, Donikian, Greenberg, SIGGRAPH 2005
illumination over a pixel: Multidimensional Lightcuts
“Multidimensional Lightcuts” by Walter, Arbree, Bala,
Greenberg, SIGGRAPH 2006

Matrix Row-Column Sampling
„Matrix row-column sampling for the many-light problem“ by
Hasan, Pellacini, Bala, SIGGRAPH 2007

important: these methods use virtual POINT lights only

Scalability
Why Many Lights?

simulate complex illumination using point lights
area lights
HDR environment maps
sun and sky light
indirect illumination

more lights → more accurate
… and more expensive
naive cost: linear in lights

goal: sub-linear cost per light
area lights + sun/sky + indirect

Lightcuts
Setting / Problem

many lights, a surface point to be lit

visible point

Lightcuts
Setting / Problem

many lights, a surface point to be lit

Lightcuts
Setting / Problem

many lights, a surface point to be lit

camera

Lightcuts
Key Concepts

light cluster
light tree
a cut: set of nodes that
partitions the lights into clusters

Lightcuts
Key Concepts

light cluster
light tree
a cut: set of nodes that
partitions the lights into clusters

clusters

individual
lights

Lightcuts
Key Concepts

light cluster
light tree
a cut: set of nodes that
partitions the lights into clusters

Lightcuts
Simple Example

4 individual lights, 3 clusters

1 2 3 4

1 4

light tree

clusters

individual
lights

4#1 #2 #3 #4 representative
lights

Simple Example
4 individual lights, 3 clusters

Lightcuts

1 2 3 4

1 4

4

1 2 3 4

1 4

4

1 2 3 4

1 4

4

3 different cuts

#1 #2 #4 #1 #3 #4 #1 #4

3 different cuts

#1 #2 #4 #1 #3 #4 #1 #4

Lightcuts
Simple Example

4 individual lights, 3 clusters

Good Bad Bad

1 2 3 4

1 4

4

1 2 3 4

1 4

4

1 2 3 4

1 4

4

3 different cuts

#1 #2 #4 #1 #3 #4 #1 #4

Lightcuts
Simple Example

4 individual lights, 3 clusters

Bad Good Bad

1 2 3 4

1 4

4

1 2 3 4

1 4

4

1 2 3 4

1 4

4

3 different cuts

#1 #2 #4 #1 #3 #4 #1 #4

Lightcuts
Simple Example

4 individual lights, 3 clusters

1 2 3 4

1 4

4

1 2 3 4

1 4

4

1 2 3 4

1 4

4

Good Good Good

Lightcuts
Algorithm Overview

pre-process
convert illumination to point lights
build light tree

for each visible point
choose a cut to approximate the local illumination

bound maximum error of cluster approximation
refine cluster if error bound is too large

Lightcuts
Perceptual Metric

Weber’s Law
contrast visibility threshold is fixed percentage of signal
used 2% in Lightcuts

ensure each cluster’s error < visibility threshold
transitions will not be visible
used to select cut

Lightcuts
Cut-Selection Algorithm

start with coarse cut (root-node)

cut

Lightcuts
Cut-Selection Algorithm

select cluster with largest error-bound

cut

Lightcuts
Cut-Selection Algorithm

refine if error bound > 2% of total
see [Walter et al. 2005] how to compute cluster estimate and error bound
(remember: this also includes BRDFs)

cut

Lightcuts
Cut-Selection Algorithm

(again) select cluster with largest error-bound

cut

Lightcuts
Cut-Selection Algorithm

… and refine if its error bound is above threshold …

cut

Lightcuts
Cut-Selection Algorithm

… and so on …

cut

Lightcuts
Cut-Selection Algorithm

… repeat until the entire cut obeys 2% threshold

cut

Lightcuts - Results

Lightcuts reference

16×Error
cut size

Tableau, 630K polygons, 13 000 lights, (env map + indirect)

Lightcuts
Summary

unified illumination handling
scalable solution for many lights

locally adaptive representation (the cut)
analytic cluster error bounds

most important lights always sampled
perceptual visibility metric

… anything else?

݈݁ݔ݅ܲ ൌ න න න ܮ ࣓,࢞ …୧୦୲ୱ୧୶ୣ୪୰ୣୟ୧୫ୣ

Multidimensional Lightcuts
A pixel is more than a point…

motion blur

Multidimensional Lightcuts
A pixel is more than a point…

motion blur
participating media

݈݁ݔ݅ܲ ൌ න න න න ܮ ࣓,࢞ …୧୦୲ୱ୧୶ୣ୪୰ୣୟ୧୫ୣ୭୪୳୫ୣ

Multidimensional Lightcuts
A pixel is more than a point…

motion blur
participating media
depth of field

݈݁ݔ݅ܲ ൌ න න න න න ܮ ࣓,࢞ …୧୦୲ୱ୧୶ୣ୪୰ୣୟ୧୫ୣ୭୪୳୫ୣ୮ୣ୰୲୳୰ୣ

Multidimensional Lightcuts
Concept

discretize full integral into 2 point sets
light points (L)
gather points (G)

light points

pixel
gather points

Multidimensional Lightcuts
Concept

discretize full integral into 2 point sets
light points (L)
gather points (G)

light points

gather points

pixel

Multidimensional Lightcuts
Concept

cluster light and gather points into 2 trees

light tree

gather tree

L0 L1 L2 L3

L4 L5

L6

G1G0

G2

L0
L1 L2

L3

G0

G1

Multidimensional Lightcuts
Concept

product graph: hierarchy over the set of all gather-light pairs
(never stored explicitly)

light tree

gather tree

L0 L1 L2 L3

L4 L5

L6

G1G0

G2G1

G0

G2

L0 L4 L1 L6 L2 L5 L3

product graph

= X

Multidimensional Lightcuts
Concept

product graph: hierarchy over the set of all gather-light pairs
(never stored explicitly)

G1

G0

G2

L0 L4 L1 L6 L2 L5 L3

product graph L0
L1 L2

L3

G0

G1

Multidimensional Lightcuts
Concept

product graph: hierarchy over the set of all gather-light pairs
(never stored explicitly)

G1

G0

G2

L0 L4 L1 L6 L2 L5 L3

product graph L0
L1 L2

L3

G0

G1

Multidimensional Lightcuts
Concept

product graph: hierarchy over the set of all gather-light pairs
(never stored explicitly)

G1

G0

G2

L0 L4 L1 L6 L2 L5 L3

product graph L0
L1 L2

L3

G0

G1

Multidimensional Lightcuts
Algorithm Overview

once per image
create lights and light tree

for each pixel
create gather points and gather tree for pixel
adaptively refine clusters in product graph until
all cluster errors < perceptual metric
(please see the paper for details)

Multidimensional Lightcuts
Results

Direct only (relative cost 1x) Direct+Indirect (1.3x)

Direct+Indirect+Volume (1.8x) Direct+Indirect+Volume+Motion (2.2x)

Bidirectional Lightcuts
Bidirectional Lightcuts

handles more effects including glossy reflections, subsurface,
short-range indirect illumination
bidirectional formulation and a set of weighting strategies to reduce the
bias in VPL-based rendering

glossy subsurface volumetric

Bidirectional Lightcuts, Walter et al., SIGGRAPH 2012

before
after

Scalability
Alternatives to Lightcuts

Matrix Row-Column Sampling [Hasan et al. 2007]
Visibility Clustering

potential advantages
shadow mapping instead of ray tracing
simpler to implement
no bounds on BRDFs required
faster in occluded environments

Matrix Interpretation

Matrix Row-Column Sampling

pixels
(2,000,000)

lights (100,000)

Matrix Row-Column Sampling
Problem Statement

pixel colors: compute sum of columns
we’re not given a matrix, we can only
evaluate ܣሺ݅, ݆ሻ on demand

= Σ ()
pi

xe
ls

lights

Matrix Row-Column Sampling

A simple scene

30 x 30 image
The matrix

643 lights

90
0

pi
xe

ls

Problem Statement
… such matrices are highly structured

Matrix Row-Column Sampling
Low Rank Assumption Violation

bad case: lights with very local contribution

…

Matrix Row-Column Sampling
Matrix Interpretation

sample a subset of matrix elements
sampling patterns do matter

point-to-point visibility: raytracing
point-to-many-points visibility: shadow mapping

lights
pi

xe
ls

Matrix Row-Column Sampling
Row-Column Shadow Duality

columns: regular shadow mapping
rows: also shadow mapping

shadow map at
light position

surface
samples

shadow map at
sample position

pixels

lights

Matrix Row-Column Sampling
Exploration and Exploitation

compute rows
(explore)

compute columns
(exploit)

weighted
sum

?

how to choose
columns and

weights?

Matrix Row-Column Sampling
Reduced Matrix

reduced
columns

Matrix Row-Column Sampling
Clustering Approach

choose k clusters
choose

representative
columns

reduced
columns

Matrix Row-Column Sampling
Algorithm Overview

compute rows (GPU)

weighted sum

assemble rows into
reduced matrix

cluster reduced
columns

choose representatives

compute columns (GPU)

Matrix Row-Column Sampling
Results: Temple

2.1m polygons
mostly indirect and sky illumination
indirect shadows

MRCS: 16.9 sec
(300 rows + 900 columns)

Reference: 20 min
(using all 100k lights)

5x diff

Matrix Row-Column Sampling
Results: Trees and Bunny

complex incoherent geometry
low rank, not low frequency

MRCS: 2.9 sec
(100 rows + 200 columns)

MRCS: 3.8 sec
(100 rows + 200 columns)

Matrix Row-Column Sampling
Tensor Clustering for Animated Scenes

sequence of matrices (one per frame) can be seen as one large tensor

sequence of matrices tensor view

pi
xe

ls

lights

pi
xe

ls

lights

Matrix Row-Column Sampling
Tensor Clustering for Animated Scenes

no details here!

Sample
slices

Reduced
tensor

Cluster
reduced
columns

Compute
representatives

Reconstruct
full tensor

Rectangular clustering

pi
xe

ls

lights

Scalable Many-Lights Rendering
More Clustering Strategies

LightSlice [Ou and Pellacini 2011]
compute initial clustering
refine it differently in different “slices”
use neighboring slices to get more rows

Visibility Clustering [Davidovič et al. 2010]
(already in Jan’s part)

separate shading from visibility
for global lights:

cluster visibility
shade from more VPLs

Scalable Many-Lights Rendering
More Clustering Strategies

Clustered Visibility [Dong et al. 2009]
cluster VPLs
use soft shadow mapping
shade from all VPLs

RSM Clustering [Prutkin et al. 2012]
bidirectional importance
temporally stable clustering
compute virtual disc lights

trace VPLs k-means clustering

soft shadow maps compute full shading

Overview
… follows the structure of the STAR

Introduction & Welcome (Carsten)
Many-Light Rendering Concepts (Jan)

Basic Idea
Improved Virtual Lights Generation
Lighting with Virtual Lights

Really Many Lights: Scalability (Carsten)
Interactive and Real-Time Rendering (Carsten)
Conclusions, Outlook, Q&A (Jan & Carsten)

77

Real-time Many-light Rendering
Outline

main difference to offline-methods is visibility computation
rasterization instead of raycasting
VPL generation
lighting and shadowing from VPLs

Real-time Many-light Rendering
Visibility Computation for VPL Generation

real-time rendering ↔ mostly diffuse scenes ↔ relatively few VPLs (~10³)
if acceleration structure available use ray casting

VPL generation with rasterization
render scene from light
observation: visible surfaces = first intersection of light path

normal

Real-time Many-light Rendering
VPL Generation with Rasterization

render scene from light into reflective shadow map [DS05]:
all information available for creating VPLs and continuing paths

single bounce indirect illumination by directly sampling the RSM
importance sampling can easily be added [DS06][REH*11]

proceed recursively by rendering another RSM

depth position

flux

reflective shadow map

Rendering with VPLs
Lighting and Shadowing

many lights can be handled with deferred shading
interleaved sampling (problem: detailed normals/geometry) [Seg06]
hierarchical shading [NW10]
accumulate and filter incident light [SW09]
clustered deferred and forward shading [OBA12]

bottleneck: shadow computation

Rendering with VPLs
Shadow Computation

…is the real bottleneck with instant radiosity / many lights methods
exploit temporal coherency [LSKLA07]
sampled visibility

voxelization, e.g. [SS10]
faster shadow maps

Shadow Mapping for VPLs
Problem Setting

need many shadow maps of low/moderate resolution
rendering the scene many times (transformation, …) is costly

what we need is level-of-detail rendering
point representations are well-suited for fast, approximate renderings
two approaches: simple LOD with no connectivity and
water-tight rendering with point hierarchy

simple
point cloud

hierarchy
of points

Shadow Mapping for VPLs
Imperfect Shadow Maps

create random sets of point samples (triangle ID + barycentric coords)
4k to 16k points per “shadow map” (global parameter)

Shadow Mapping for VPLs
Imperfect Shadow Maps

4k to 16k points per “shadow map” (global parameter)
heuristic to reconstruct the surfaces from point samples

without pull-push triangle rasterizationwith pull-push

3D
2D

Shadow Mapping for VPLs
Imperfect Shadow Maps

comparison of shadow maps for a single point light

triangle rasterization without pull-push with pull-push

Shadow Mapping for VPLs
Imperfect Shadow Maps

pull-push in image-space: parallel for thousands of shadow maps

without pull-push with pull-push

Shadow Mapping for VPLs
Imperfect Shadow Maps

… can render thousands of shadow maps in 100ms
… work because errors average out
… require playing with parameters

“perfect” shadow maps imperfect shadow maps

Shadow Mapping for VPLs
High-Quality Point-based Rendering

create random points on surfaces and create hierarchy
idea of Qsplat: traverse hierarchy until projected size of point primitive is
small enough

image size >1 pixel

traverse children

Shadow Mapping for VPLs
High-Quality Point-based Rendering

create random points on surfaces and create hierarchy
idea of Qsplat: traverse hierarchy until projected size of point primitive is
small enough

image size >1 pixel

traverse children

Shadow Mapping for VPLs
High-Quality Point-based Rendering

create random points on surfaces and create hierarchy
idea of Qsplat: traverse hierarchy until projected size of point primitive is
small enough

image size <1 pixel

render point primitive

Shadow Mapping for VPLs
Micro-Rendering

renders accurate environment maps / depth buffers from point hierarchy
actually developed for final gathering, using CUDA/OpenCL
can be used to create (R)SMs (in 2009: ~16k in 100 ms, each 24² pixels)

Shadow Mapping for VPLs
ManyLODs [Holländer, PhD Thesis]

fine-grained LOD selection for many views based on BVH
incremental and lazy update schemes to many-view problem

Light Transport in Participating Media
direct light from surface VPLs and
single-scattering from media VPLs (emit according to phase function)
VPLs also generated at scattering events in media (Jan’ part)

Rendering Strategies for Participating Media

Participating Media with Many-Lights
Visibility and Transmittance

homogeneous media:
standard shadow map per VPL (compute transmittance)

heterogeneous media:
shadow map plus ray marching or
deep shadow maps [LV00] or
adaptive volumetric SM [SVLL10]

depth0
1

transmittance

Real-time Many-light Rendering
Conclusions

many-lights methods work quite well in real-time
bias compensation is feasible for surfaces and media
glossiness for surfaces ↔ anisotropic phase functions for media
for mostly diffuse scenes, for scenes with moderate anisotropic media

isotropic moderate anisotropic strong anisotropic

